Radiotelemetry data are often used to make inferences about an entire study population; therefore, the transmitter attachment method should be the one that least affects the study animal. Juvenile chinook salmon (Oncorhynchus tshawytscha) <120 mm in fork length (FL) with either gastrically or surgically implanted transmitters had significantly lower critical swimming speeds than control fish 1 and 19-23 days after tagging. For fish >120 mm FL, fish with gastric implants swam as well as controls 1 day but not 19-23 days after tagging. In contrast, fish with surgical implants swam as well as controls 19-23 days but not 1 day after tagging. During predation trials, fish with gastric or surgical implants were eaten by smallmouth bass (Micropterus dolomieu) in significantly greater numbers than controls. We do not recommend implanting transmitters (representing 4.6-10.4% of the fish's body weight) in fish <120 mm FL. Furthermore, surgical implants (representing 2.2-5.6% of the fish's body weight) may be the preferred method for biotelemetry studies of juvenile chinook salmon >120 mm FL.
Juvenile Chinook salmon Oncorhynchus tshawytscha emigrating from natal tributaries of the Sacramento River must negotiate the Sacramento-San Joaquin River Delta, a complex network of natural and man-made channels linking the Sacramento River with San Francisco Bay. Natural processes and water management actions affect the fractions of the population using the different migration routes through the delta and survival within those routes. However, estimating these demographic parameters is difficult using traditional mark-recapture techniques, which depend on the physical recapture of fish (e.g., coded wire tags). Thus, our goals were to (1) develop a mark-recapture model to explicitly estimate the survival and migration route probabilities for each of four migration routes through the delta, (2) link these route-specific probabilities to population-level survival, and (3) apply this model to the first available acoustic telemetry data of smolt migration through the delta. The point estimate of survival through the delta for 64 tagged fish released in December 2006 (Ŝ delta ¼ 0.351; SE ¼ 0.101) was lower than that for 80 tagged fish released in January 2007 (Ŝ delta ¼ 0.543; SE ¼ 0.070). We attributed the observed difference in survival between releases to differences in survival for given migration routes and changes in the proportions of fish using the different routes. Our study shows how movements among, and survival within, migration routes interact to influence population-level survival through the delta. Thus, concurrent estimation of both route-specific migration and survival probabilities is critical to understanding the factors affecting population-level survival in a spatially complex environment such as the delta.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.