Sources of pure and indistinguishable single-photons are critical for near-future optical quantum technologies. Recently, color centers hosted by two-dimensional hexagonal boron nitride (hBN) have emerged as a promising platform for high luminosity room temperature single-photon sources. Despite the brightness of the emitters, the spectrum is rather broad and the single-photon purity is not sufficient for practical quantum information processing. Here, we report integration of such a quantum emitter hosted by hBN into a tunable optical microcavity. A small mode volume of the order of λ 3 allows us to Purcell enhance the fluorescence, with the observed excited state lifetime shortening. The cavity significantly narrows the spectrum and improves the single-photon purity by suppression of off-resonant noise. We explore practical applications by evaluating the performance of our single-photon source for quantum key distribution and quantum computing. The complete device is compact and implemented on a picoclass satellite platform, enabling future low-cost satellite-based long-distance quantum networks.
Induced transparency is a common but remarkable effect in optics. It occurs when a strong driving field is used to render an otherwise opaque material transparent. The effect is known as electromagnetically induced transparency in atomic media and optomechanically induced transparency in systems that consist of coupled optical and mechanical resonators. In this work, we introduce the concept of photothermally induced transparency (PTIT). It happens when an optical resonator exhibits non-linear behavior due to optical heating of the resonator or its mirrors. Similar to the established mechanisms for induced transparency, PTIT can suppress the coupling between an optical resonator and a traveling optical field. We further show that the dispersion of the resonator can be modified to exhibit slow or fast light. Because of the relatively slow thermal response, we observe the bandwidth of the PTIT to be 2π × 15.9 Hz which theoretically suggests a group velocity of as low as 5 m/s.
Optical levitation of mechanical oscillators has been suggested as a promising way to decouple the environmental noise and increase the mechanical quality factor. Here, we investigate the dynamics of a free-standing mirror acting as the top reflector of a vertical optical cavity, designed as a testbed for a tripod cavity optical levitation setup. To reach the regime of levitation for a milligram-scale mirror, the optical intensity of the intracavity optical field approaches 3 MW cm−2. We identify three distinct optomechanical effects: excitation of acoustic vibrations, expansion due to photothermal absorption, and partial lift-off of the mirror due to radiation pressure force. These effects are intercoupled via the intracavity optical field and induce complex system dynamics inclusive of high-order sideband generation, optical bistability, parametric amplification, and the optical spring effect. We modify the response of the mirror with active feedback control to improve the overall stability of the system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.