Abstract-An efficient finite-difference time-domain method based on the locally one-dimensional scheme (LOD-FDTD) is developed for the analysis of periodic structures. The Sherman-Morrison formula is used to efficiently solve the cyclic matrix problem resulting from the application of the periodic boundary condition to the implicit LOD scheme. Through the analysis of a photonic band-gap (PBG) structure, numerical results are found to be identical to those of the alternating-direction implicit (ADI) counterpart. The use of dispersion control parameters enables us to use a large time-step size. As a result, the computational time is reduced to 50% of that of the traditional explicit FDTD while maintaining acceptable numerical results.Index Terms-Alternating-direction implicit (ADI) scheme, finite-difference time-domain (FDTD), periodic structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.