Regional climate modeling addresses our need to understand and simulate climatic processes and phenomena unresolved in global models. This paper highlights examples of current approaches to and innovative uses of regional climate modeling that deepen understanding of the climate system. High-resolution models are generally more skillful in simulating extremes, such as heavy precipitation, strong winds, and severe storms. In addition, research has shown that fine-scale features such as mountains, coastlines, lakes, irrigation, land use, and urban heat islands can substantially influence a region’s climate and its response to changing forcings. Regional climate simulations explicitly simulating convection are now being performed, providing an opportunity to illuminate new physical behavior that previously was represented by parameterizations with large uncertainties. Regional and global models are both advancing toward higher resolution, as computational capacity increases. However, the resolution and ensemble size necessary to produce a sufficient statistical sample of these processes in global models has proven too costly for contemporary supercomputing systems. Regional climate models are thus indispensable tools that complement global models for understanding physical processes governing regional climate variability and change. The deeper understanding of regional climate processes also benefits stakeholders and policymakers who need physically robust, high-resolution climate information to guide societal responses to changing climate. Key scientific questions that will continue to require regional climate models, and opportunities are emerging for addressing those questions.
The scale and intensity of extreme wind events have tremendous relevance to determining the impact on infrastructure and natural and managed ecosystems. Analyses presented herein show the following. 1) Wind speeds in excess of the station-specific 95th percentile are coherent over distances of up to 1000 km over the eastern United States, which implies that the drivers of high wind speeds are manifest at the synoptic scale. 2) Although cold fronts associated with extratropical cyclones are a major cause of high-wind speed events, maximum sustained and gust wind speeds are only weakly dependent on the near-surface horizontal temperature gradient across the front. 3) Gust factors (GF) over the eastern United States have a mean value of 1.57 and conform to a lognormal probability distribution, and the relationship between maximum observed GF and sustained wind speed conforms to a power law with coefficients of 5.91 and 20.499. Even though there is coherence in the occurrence of intense wind speeds at the synoptic scale, the intensity and spatial extent of extreme wind events are not fully characterized even by the dense meteorological networks deployed by the National Weather Service. Seismic data from the USArray, a program within the Earthscope initiative, may be suitable for use in mapping high-wind and gust events, however. It is shown that the seismic channels exhibit well-defined spectral signatures under conditions of high wind, with a variance peak at frequencies of ;0.04 s 21 and an amplitude that appears to scale with the magnitude of observed wind gusts.
Defining optimal scanning geometries for scanning lidars for wind energy applications remains an active field of research. This paper evaluates uncertainties associated with arc scan geometries and presents recommendations regarding optimal configurations in the atmospheric boundary layer. The analysis is based on arc scan data from a Doppler wind lidar with one elevation angle and seven azimuth angles spanning 30° and focuses on an estimation of 10-min mean wind speed and direction. When flow is horizontally uniform, this approach can provide accurate wind measurements required for wind resource assessments in part because of its high resampling rate. Retrieved wind velocities at a single range gate exhibit good correlation to data from a sonic anemometer on a nearby meteorological tower, and vertical profiles of horizontal wind speed, though derived from range gates located on a conical surface, match those measured by mast-mounted cup anemometers. Uncertainties in the retrieved wind velocity are related to high turbulent wind fluctuation and an inhomogeneous horizontal wind field. The radial velocity variance is found to be a robust measure of the uncertainty of the retrieved wind speed because of its relationship to turbulence properties. It is further shown that the standard error of wind speed estimates can be minimized by increasing the azimuthal range beyond 30° and using five to seven azimuth angles.
The Weather Research and Forecasting (WRF) Model has been extensively used for wind energy applications, and current releases include a scheme that can be applied to examine the effects of wind turbine arrays on the atmospheric flow and electricity generation from wind turbines. Herein we present a high-resolution simulation using two different wind farm parameterizations: 1) the “Fitch” parameterization that is included in WRF releases and 2) the recently developed Explicit Wake Parameterization (EWP) scheme. We compare the schemes using a single yearlong simulation for a domain centered on the highest density of current turbine deployments in the contiguous United States (Iowa). Pairwise analyses are applied to diagnose the downstream wake effects and impact of wind turbine arrays on near-surface climate conditions. On average, use of the EWP scheme results in small-magnitude wake effects within wind farm arrays and faster recovery of full WT array wakes. This in turn leads to smaller impacts on near-surface climate variables and reduced array–array interactions, which at a systemwide scale lead to summertime capacity factors (i.e., the electrical power produced relative to nameplate installed capacity) that are 2%–3% higher than those from the more commonly applied Fitch parameterization. It is currently not possible to make recommendations with regard to which wind farm parameterization exhibits higher fidelity or to draw inferences with regard to whether the relative performance may vary with prevailing climate conditions and/or wind turbine deployment configuration. However, the sensitivities documented herein to the wind farm parameterization are of sufficient magnitude to potentially influence wind turbine array siting decisions. Thus, our research findings imply high value in undertaking combined long-term high-fidelity observational studies in support of model validation and verification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.