This article is available online at http://dmd.aspetjournals.org ABSTRACT:Voriconazole is a new triazole antifungal agent with potent, widespectrum activity. Its pharmacokinetics and metabolism have been studied in mouse, rat, rabbit, dog, guinea pig, and humans after single and multiple administration by both oral and intravenous routes. Absorption of voriconazole is essentially complete in all species. The elimination of voriconazole is characterized by nonlinear pharmacokinetics in all species. Consequently, pharmacokinetic parameters are dependent upon dose, and a superproportional increase in area under the curve is seen with increasing dose in rat and dog toxicology studies. Following multiple administration, there is a decrease in systemic exposure. This is most pronounced in mouse and rat, less so in dog, and not observed in guinea pig or rabbit. Repeat-dose toxicology studies in mouse, rat, and dog have demonstrated that induction of cytochrome P450 by voriconazole (autoinduction of metabolism) is responsible for the decreased exposure in these species. Autoinduction of metabolism is not observed in humans, and plasma steady-state concentrations remain constant with time. Voriconazole is extensively metabolized in all species. The major pathways in humans involve fluoropyrimidine N-oxidation, fluoropyrimidine hydroxylation, and methyl hydroxylation. Also, N-oxidation facilitates cleavage of the molecule, resulting in loss of the fluoropyrimidine moiety and subsequent conjugation with glucuronic acid. Major pathways are represented in animal species. The major circulating metabolite in rat, dog, and human is the N-oxide of voriconazole. It is not thought to contribute to efficacy since it is at least 100-fold less potent than voriconazole against fungal pathogens in vitro.Voriconazole [VFEND,496, 1 (2R,3S)-2-(2,4-difluorophenyl)-3-(5-fluoro-4-pyrimidinyl)-1-(1H-1,2,4-triazol-1-yl)-2-butanol; Fig. 1) is a new antifungal agent that is a derivative of fluconazole, having one triazole moiety replaced by a fluoropyrimidine ring and a methyl group added to the propanol backbone (Richardson et al., 1995). This change in structure results in potent, wide-spectrum activity in vitro and a fungicidal action against various mold species, including Aspergillus (Barry and Brown, 1996;Murphy et al., 1997). In common with other azole antifungal agents, such as fluconazole and itraconazole, its primary mode of action is inhibition of fungal cytochrome P450-dependent 14␣-sterol demethylase, an essential enzyme in ergosterol biosynthesis (Sanati et al., 1997). Voriconazole shows a greater selectivity for the fungal enzyme than for the corresponding rat liver enzyme compared with both ketoconazole and itraconazole (Pye et al., 1995). Voriconazole is moderately lipophilic (log D 7.4 ϭ 1.8) and a single diastereomer with R-and S-stereochemistry by virtue of two chiral centers (2R, 3S) as shown in Fig. 1.Pharmacokinetic and metabolism studies have been performed in preclinical species as part of the voriconazole development pr...
SUMMARYThe interspecies transmission of scrapie is frequently associated with exceptionally long incubation periods at first passage in the new host compared to later passages (the species barrier effect). The basis of this was investigated using the 139A strain of scrapie which had been cloned by three serial passages in mice at limiting infectious doses. Cloned scrapie was passaged through hamsters (twice) or rats (thrice) and then reisolated in mice. Large species barrier effects were encountered on mouse-to-hamster and hamster-to-mouse passage resulting in the isolation of a mutant strain,
alpha-[(1-Aziridinyl)methyl]-2-nitro-1H-imidazole-1-ethanols, of general formula ImCH2CH(OH)CH2NCR1R2CR3R4, where Im = 2-nitroimidazole and R1, R2, R3, R4 = H, Me, are radiosensitizers and selective bioreductively activated cytotoxins toward hypoxic tumor cells in vitro and in vivo. Treatment of the aziridines with hydrogen halide in acetone or aqueous acetone gave the corresponding 2-haloethylamines of general formula ImCH2CH(OH)CH2(+)-NH2CR1R2CR3R4X X-, where R1, R2, R3, R4 = H, Me, and X = F, Cl, Br, I. These 2-haloethylamines were evaluated as prodrugs of the parent aziridines. The rates of ring closure in aqueous solution at pH approximately 6 were found to increase with increasing methyl substitution and to depend on the nature of the leaving group (I approximately Br greater than Cl much greater than F). A competing reaction of ImCH2CH(OH)CH2+NH2CH2CH2X X- (X = Cl, Br) with aqueous HCO3- ions gives 3-[2-hyroxy-3-(2-nitro-1H-imidazol-1-yl)propyl]-2-oxazolidinone. The activities of these prodrugs as radiosensitizers or as bioreductively activated cytotoxins were consistent with the proportion converted to the parent aziridine during the course of the experiment. alpha-[[(2-Bromoethyl)amino]methyl]-2-nitro-1H-imidazole-1- ethanol (RB 6145, 10), the prodrug of alpha-[(1-aziridinyl)methyl]-2-nitro-1H-imidazole-1-ethanol (RSU-1069, 3), is identified as the most useful compound in terms of biological activity and rate of ring closure under physiological conditions.
At the late clinical stage of scrapie in mice, the severity and distribution of vacuolation in the brain (the lesion profile) is largely determined by the strain of agent and the genotype of the mouse: under controlled conditions, lesion profiles can be used to distinguish between scrapie strains. This paper describes the sequential development of lesions in brain at much earlier times and includes a study of spinal cord. Mice (CW) were infected intraperitoneally with 139A scrapie. Grey matter vacuolation first occurred in thoracic cord, developing later in lumbar and cervical cords, and then in various brain regions in a caudal to rostral sequence. This pattern closely matches the sequential spread of infection from mid-thoracic cord to much of the CNS that was previously found in this scrapie model. Further studies of grey matter in spinal cord suggest that agent entered the mid-thoracic region via sympathetic fibres. Vacuolation in white matter mirrored the grey matter pattern within an area but always occurred later. The severity of grey matter vacuolation in the four areas of the CNS where it developed early, reached plateau levels before the clinical stage of scrapie, but the severity was still increasing at the clinical stage in areas where vacuolation had started late. Hence the severity of lesions in a particular area may sometimes be limited by the time available for them to develop before the host dies. It appears that the distribution of vacuolation in this particular scrapie model is initially influenced by that of the infectious agent and only later does it reflect the distribution of vacuolation target areas shown by the characteristic lesion profile.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.