Mangiferin, 2-b b-D-glucopyranosyl-1,3,6,7-tetrahydroxy-9H-xanthen-9-one, obtained directly from methanolic extracts of Bombax ceiba leaves in substantial amounts demonstrated strong antioxidant activity (EC 50 5.8؎0.96 m mg/ml or 13.74 m mM) using DPPH assay comparable to rutin, commonly used as antioxidant for medical purposes. The acetyl and cinnamoyl derivatives were found to be less active than mangiferin whereas, methyl and 3,6,7-trimethylether tetraacetate derivatives were inactive implying that for antioxidant activity, free hydroxyl groups and catechol moiety are essential. Moreover, mangiferin showed hepatoprotective activity against carbon tetrachloride induced liver injury further supporting the free radical scavenging property in the in vivo system. Additionally, plant extracts and mangiferin failed to exhibit acute anti-inflammatory activity whereas, it displayed significant analgesic effect in acetic acid-induced writhing and hot plate tests in mice. Using naloxone, it was revealed that plant extracts induced analgesia was independent of opioid receptor, whereas, mangiferin demonstrated significant interaction with it at peripheral site with a slight contribution at the neuronal level.
Designing biomaterial scaffolds remains a major challenge in tissue engineering. Key to this challenge is improved understanding of the relationships between the scaffold properties and its degradation kinetics, as well as the cell interactions and the promotion of new matrix deposition. Here we present the use of non-linear spectroscopic imaging as a non-invasive method to characterize not only morphological, but also structural aspects of silkworm silk fibroin-based biomaterials, relying entirely on endogenous optical contrast. We demonstrate that two photon excited fluorescence and second harmonic generation are sensitive to the hydration, overall β sheet content and molecular orientation of the sample. Thus, the functional content and high resolution afforded by these noninvasive approaches offer promise for identifying important connections between biomaterial design and functional engineered tissue development. The strategies described also have broader implications for understanding and tracking the remodeling of degradable biomaterials under dynamic conditions both in vitro and in vivo.
5-aminolevulanic acid (ALA), belonging among the promising second generation of sensitizers, was evaluated as an inducer of photodamage on HeLa (human cervical adenocarcinoma) cell line. A diode laser (635 nm) was used as a source for initiation of the photodynamic effect. We studied the influence of different incubation times, various concentrations of sensitizer, different irradiation doses and various combinations of sensitizer and light doses on the photodamage of HeLa cells. Viability of cells was determined by means of neutral red assay. The quantitative cellular uptake of ALA sensitizer was done by spectrophotometric measurements. No prominent cytotoxic or phototoxic effects on HeLa were observed due to sensitizer or light doses when studied independently of each other. However phototoxicity evoked by laser irradiated sensitizer was detected in HeLa cell line.
The aim of this study was to investigate the mechanism of cell death by photodynamic therapy (PDT) in the Rhabdomyosarcoma (RD) cell line. The present study evaluates the effects of photodynamic therapy (PDT) with 5-ALA as photosensitizer using human muscle cancer cells as experimental model. We study the photosensitizer uptake, cytotoxicity, phototoxicity, and cellular viability of the RD cells which was estimated by means of neutral-red spectrophotometric assay. The given experiment was consisted of two steps. For the first one, RD cells were exposed to 5-ALA at concentrations of 0 up to 1000 μg of ALA/ml in minimum essential medium (MEM). The optimal uptake of photosensitizer (5-ALA) in RD cells was investigated by means of spectrometric measurements. Cells viability was determined by means of neutral red assay (NRA). In the second step, 5-ALA exposed RD cells were irradiated with red light (a diode laser, λ = 635 nm) at total light dose of 80 J/cm 2 . The influence of different incubation times and concentrations of 5-ALA, different irradiation doses and various combinations of photosensitizer and light doses on the viability of RD cells were investigated. It was observed that sensitizer concentration or light doses have no significant effect on cells viability when studied independently. The maximal cellular uptake occurred after 47 hours in vitro incubation. The phototoxic assay showed that ALA-PDT induced killing of 76% of the cells at 250 μg/ml drug dose and 80 J/cm 2 light dose.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations –citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.