The unexpected and prolonged persistence of warm conditions over the tropical Pacific during the early 1990s can be attributed to an interdecadal climate fluctuation that involves changes in the properties of the equatorial thermocline arising as a result of an influx of water with anomalous temperatures from higher latitudes. The influx affects equatorial sea-surface temperatures and hence the tropical and extratropical winds that in turn affect the influx. A simple model demonstrates that these processes can give rise to continual interdecadal oscillations.
The intertropical convergence zone (ITCZ) stays in the northern hemisphere over the Atlantic and eastern Pacific, even though the annual mean position of the sun is on the equator. To study some processes that contribute to this asymmetry about the equator, we use a two‐dimensional model which neglects zonal variations and consists of an ocean model with a mixed layer coupled to a simple atmospheric model. In this coupled model, the atmosphere not only transports momentum into the ocean, but also directly affects sea surface temperature by means of wind stirring and surface latent heat flux. Under equatorially symmetric conditions, the model has, in addition to an equatorially symmetric solution, two asymmetric solutions with a single ITCZ that forms in only one hemisphere. Strong equatorial upwelling is essential for the asymmetry. Local oceanic turbulent processes involving vertical mixing and surface latent heat flux, which are dependent on wind speed, also contribute to the asymmetry.
Recent advances in observational and theoretical studies of El Nino have shed light on controversies concerning the possible effect of global warming on this phenomenon over the past few decades and in the future. El Nino is now understood to be one phase of a natural mode of oscillation-La Nina is the complementary phase-that results from unstable interactions between the tropical Pacific Ocean and the atmosphere. Random disturbances maintain this neutrally stable mode, whose properties depend on the background (time-averaged) climate state. Apparent changes in the properties of El Nino could reflect the importance of random disturbances, but they could also be a consequence of decadal variations of the background state. The possibility that global warming is affecting those variations cannot be excluded.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.