High-mobility group box 1 (HMGB1) functions as a transcription-enhancing nuclear protein as well as a crucial cytokine that regulates inflammation. This study demonstrated that secretion of HMGB1 due to ultraviolet (UV) radiation inducing ocular surface inflammation-mediated reactive oxygen species (ROS) production. After treating conjunctival epithelial cells with UV radiation, HMGB1 was translocated from the nucleus to the cytoplasm and then eventually to the extracellular space. HMGB1 played a crucial role in UV-induced conjunctival neutrophil infiltration, which subsided when mice were pretreated with the HMGB1 inhibitors soluble receptor for advanced glycation endproducts (sRAGEs) and HMGB1 A box protein. In case of using ROS quencher, there was decrease in UV-induced HMGB1 secretion in conjunctival epithelial cells and mice. Considering that UV-induced chronic inflammation causes ocular surface change as pterygium, we have confirmed high HMGB1 translocation and ROS expression in human pterygium. Our findings therefore revealed a previously unknown mechanism of UV-induced ocular inflammation related to ROS and HMGB1 suggesting a new medical therapeutic target.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.