The combustion of a freely falling dodecane droplet has been studied experimentally in a droptower-like facility under ambient conditions. A unique ignition mechanism is used by igniting the droplet in pendant mode and releasing it to fall freely. This unveils a different type of droplet wake flame behavior which is explored in this study. Initially, the droplet flame transitions from fully enveloped to a wake flame configuration due to forward extinction. The wake flame has similar characteristics as a laminar lifted triple-flame. As the droplet accelerates, the flame stand-off increases continuously. The change in wake flame topology and intensity occurs in two different regimes corresponding to different droplet diameters. A new non-dimensional parameter has been derived to account for the local balance between buoyancy and momentum diffusion that alters the fuel availability. To explain the flame topological evolutions and transitions for different droplet diameters and Reynolds numbers, a theoretical formulation has been proposed based on the momentum diffusion from surrounding due to relative motion. Further, at very high Reynolds number, flame stretching or shedding regime occurs, causing momentary spikes in flame intensity due to the interaction with asymmetric vortex shedding induced by the Bernard-Von Karman instability. Interestingly, the flame shedding height follows the buoyant flickering scaling, even for the momentum-dominant droplet wake flame. Additionally, the circulation build-up mechanisms are shown to be responsible for the flame shedding events for droplet wake flame at high Reynolds number.
The advent of the COVID-19 pandemic has necessitated the use of face masks, making them an integral part of the daily routine. Face masks occlude the infectious droplets during any respiratory event contributing to source control. In the current study, spray impingement experiments were conducted on porous surfaces like masks having a different porosity, pore size, and thickness. The spray mimics actual cough or a mild sneeze with respect to the droplet size distribution (20–500 [Formula: see text]) and velocity scale (0–14 [Formula: see text]), which makes the experimental findings physiologically realistic. The penetration dynamics through the mask showed that droplets of all sizes beyond a critical velocity penetrate through the mask fabric and atomize into daughter droplets in the aerosolization range, leading to harmful effects due to the extended airborne lifetime of aerosols. By incorporating spray characteristics along with surface tension and viscous dissipation of the fluid passing through the mask, multi-step penetration criteria have been formulated. The daughter droplet size and velocity distribution after atomizing through multi-layered masks and its effects have been discussed. Moreover, the virus-emulating particle-laden surrogate respiratory droplets are used in impingement experiments to study the filtration and entrapment of virus-like nanoparticles in the mask. Furthermore, the efficacy of the mask from the perspective of a susceptible person has been investigated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.