Based on the density functional theory and Boltzmann transport theory, we investigated electronic, electrical and optical properties of Kesterite CZTS under different strain conditions. Our results indicate that both biaxial compressive and tensile strain effects lead to change in the band gap of this structure with different strain values. Furthermore, the edge of absorption, under the influence of an increasing compression, moves towards the short wavelengths. Electrical conductivity for pure CZTS and under dilatation and compression shows that with the increase of dilatation the conductivity of the material also increases, this physical property could be exploited to improve the performance of CZTS a suitable absorbent material in solar cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.