Diseases and pests cause huge economic loss to the apple industry every year. The identification of various apple diseases is challenging for the farmers as the symptoms produced by different diseases may be very similar, and may be present simultaneously. This paper is an attempt to provide the timely and accurate detection and identification of apple diseases. In this study, we propose a deep learning based approach for identification and classification of apple diseases. The first part of the study is dataset creation which includes data collection and data labelling. Next, we train a Convolutional Neural Network (CNN) model on the prepared dataset for automatic classification of apple diseases. CNNs are end-to-end learning algorithms which perform automatic feature extraction and learn complex features directly from raw images, making them suitable for wide variety of tasks like image classification, object detection, segmentation etc. We applied transfer learning to initialize the parameters of the proposed deep model. Data augmentation techniques like rotation, translation, reflection and scaling were also applied to prevent overfitting. The proposed CNN model obtained encouraging results, reaching around 97.18% of accuracy on our prepared dataset. The results validate that the proposed method is effective in classifying various types of apple diseases and can be used as a practical tool by farmers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.