Background: Eradication of Helicobacter pylori is an important objective in overcoming gastric diseases. Many regimens are currently available but none of them could achieve 100% success in eradication. Eugenol and cinnamaldehyde that are commonly used in various food preparations are known to possess antimicrobial activity against a wide spectrum of bacteria.
The cag pathogenicity island (cag-PAI) is one of the major virulence determinants of Helicobacter pylori. The chromosomal integrity of this island or the lack thereof is speculated to play an important role in the progress of the gastroduodenal pathology caused by H. pylori. We determined the integrity of the cag-PAI by using specific flanking and internally anchored PCR primers to know the biogeographical distribution of strains carrying fully integral cag-PAI with proinflammatory behavior in vivo. Genotypes based on eight selected loci were studied in 335 isolates obtained from eight different geographic regions. The cag-PAI appeared to be disrupted in the majority of patient isolates throughout the world. Conservation of cag-PAI was highest in Japanese isolates (57.1%). However, only 18.6% of the Peruvian and 12% of the Indian isolates carried an intact cag-PAI. The integrity of cag-PAI in European and African strains was minimal. All 10 strains from Costa Rica had rearrangements. Overall, a majority of the strains of East Asian ancestry were found to have intact cag-PAI compared to strains of other descent. We also found that the cagE and cagT genes were less often rearranged (18%) than the cagA gene (27%). We attempted to relate cag-PAI rearrangement patterns to disease outcome. Deletion frequencies of cagA, cagE, and cagT genes were higher in benign cases than in isolates from severe ulcers and gastric cancer. Conversely, the cagA promoter and the left end of the cag-PAI were frequently rearranged or deleted in isolates linked to severe pathology. Analysis of the cag-PAI genotypes with a different biogeoclimatic history will contribute to our understanding of the pathogen-host interaction in health and disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.