The Infrared Atmospheric Sounding Interferometer (IASI) forms the main infrared sounding component of the European Organisation for the Exploitation of Meteorological Satellites's (EUMETSAT's) Meteorological Operation (MetOp)-A satellite (Klaes et al. 2007), which was launched in October 2006. This article presents the results of the first 4 yr of the operational IASI mission. The performance of the instrument is shown to be exceptional in terms of calibration and stability. The quality of the data has allowed the rapid use of the observations in operational numerical weather prediction (NWP) and the development of new products for atmospheric chemistry and climate studies, some of which were unexpected before launch. The assimilation of IASI observations in NWP models provides a significant forecast impact; in most cases the impact has been shown to be at least as large as for any previous instrument. In atmospheric chemistry, global distributions of gases, such as ozone and carbon monoxide, can be produced in near–real time, and short-lived species, such as ammonia or methanol, can be mapped, allowing the identification of new sources. The data have also shown the ability to track the location and chemistry of gaseous plumes and particles associated with volcanic eruptions and fires, providing valuable data for air quality monitoring and aircraft safety. IASI also contributes to the establishment of robust long-term data records of several essential climate variables. The suite of products being developed from IASI continues to expand as the data are investigated, and further impacts are expected from increased use of the data in NWP and climate studies in the coming years. The instrument has set a high standard for future operational hyperspectral infrared sounders and has demonstrated that such instruments have a vital role in the global observing system.
This study evaluates model-simulated dust aerosols over North Africa and the North Atlantic from five global models that participated in the Aerosol Comparison between Observations and Models phase II model experiments. The model results are compared with satellite aerosol optical depth (AOD) data from Moderate Resolution Imaging Spectroradiometer (MODIS), Multiangle Imaging Spectroradiometer (MISR), and Sea-viewing Wide Field-of-view Sensor, dust optical depth (DOD) derived from MODIS and MISR, AOD and coarse-mode AOD (as a proxy of DOD) from ground-based Aerosol Robotic Network Sun photometer measurements, and dust vertical distributions/centroid height from Cloud Aerosol Lidar with Orthogonal Polarization and Atmospheric Infrared Sounder satellite AOD retrievals. We examine the following quantities of AOD and DOD: (1) the magnitudes over land and over ocean in our study domain, (2) the longitudinal gradient from the dust source region over North Africa to the western North Atlantic, (3) seasonal variations at different locations, and (4) the dust vertical profile shape and the AOD centroid height (altitude above or below which half of the AOD is located). The different satellite data show consistent features in most of these aspects; however, the models display large diversity in all of them, with significant differences among the models and between models and observations. By examining dust emission, removal, and mass extinction efficiency in the five models, we also find remarkable differences among the models that all contribute to the discrepancies of model-simulated dust amount and distribution. This study highlights the challenges in simulating the dust physical and optical processes, even in the best known dust environment, and stresses the need for observable quantities to constrain the model processes.
Abstract. Monthly mean infrared (10 µm) dust layer aerosol optical depth (AOD) and mean altitude are simultaneously retrieved over the tropics (30 • S-30 • N) from almost seven years of Atmospheric Infrared Sounder (AIRS) observations covering the period January 2003 to September 2009. The method developed relies on the construction of look-uptables computed for a large selection of atmospheric situations and follows two main steps: first, determination of the observed atmospheric thermodynamic situation and, second, determination of the dust properties. A very good agreement is found between AIRS-retrieved AODs and visible optical depths from the Moderate resolution Imaging Spectroradiometer (MODIS/Aqua) during the main (summer) dust season, in particular for three regions of the tropical North Atlantic and one region of the north-western Indian Ocean. Outside this season, differences are mostly due to the sensitivity of MODIS to aerosol species other than dust and to the more specific sensitivity of AIRS to the dust coarse mode. AIRS-retrieved dust layer mean altitudes are compared to the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP/CALIPSO) aerosol mean layer altitude for the period June 2006 to June 2009. Results for a region of the north tropical Atlantic downwind of the Sahara show a good agreement between the two products (σ ≈360 m). Differences observed in the peak-to-trough seasonal amplitude, smaller from AIRS, are principally attributed to the large difference in spatial sampling of the two instruments. They also Correspondence to: S. Peyridieu (sophie.peyridieu@lmd.polytechnique.fr) come from the intrinsic limit in sensitivity of the passive infrared sounders for low altitudes. These results demonstrate the capability of high resolution infrared sounders to measure not only dust aerosol AOD but also the mean dust layer altitude.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.