Mass measurements of fission and projectile fragments, produced via 238 U and 124 Xe primary beams, have been performed with the multiple-reflection time-of-flight mass spectrometer (MR-TOF-MS) of the Fragment Separator (FRS) Ion Catcher with a mass resolving power (FWHM) of up to 410 000 and an uncertainty of down to 6 × 10 −8. The nuclides were produced and separated in flight with the fragment separator FRS at 300 to 1000 MeV/u and thermalized in a cryogenic stopping cell. The data-analysis procedure was developed to determine with highest accuracy the mass values and the corresponding uncertainties for the most challenging conditions: down to a few events in a spectrum and overlapping distributions, which can be distinguished from a single peak only by a broader peak shape. With this procedure, the resolution of low-lying isomers is increased by a factor of up to 3 compared to standard data analysis. The ground-state masses of 31 short-lived nuclides of 15 different elements with half-lives of down to 17.9 ms and count rates as low as 11 events per nuclide were determined. This is the first direct mass measurement for seven nuclides. The excitation energies and the isomer-to-groundstate ratios of six isomeric states with excitation energies of as little as 280 keV were measured. For nuclides with known mass values, the average relative deviation from the literature values is (4.5 ± 5.3) × 10 −8. The measured two-neutron separation energies and their slopes near and at the N = 126 and Z = 82 shell closures indicate a strong element-dependent binding energy of the first neutron above the closed proton shell Z = 82. The experimental results deviate strongly from the theoretical predictions, especially for N = 126 and N = 127.
We have developed a stopping cell to be used at the FRS and Super-FRS (Superconducting FRagment Separator) at the GSI Helmholtz Centre for Heavy-Ion Research and the Facility for Antiproton and Ion Research (FAIR), both in Darmstadt, Germany. The cell has a stopping volume with a length of 1 m and a diameter of 25 cm. It is aimed at operation with highdensity helium gas (up to 0.2 mg/cm 3 ). Ours is the first realisation of a stopping cell in which the required purity of the helium stopping gas is ensured by operation at cryogenic temperatures. On the exit side, the ions are guided to the exit hole by an RF carpet with 4 electrodes per mm, operating at a frequency of 5.8 MHz. We present the first commissioning results of the cryogenic stopping cell. Using 219 Rn ions emitted as alpha-decay recoils from a 223 Ra source, a combined ion survival and extraction efficiency between 10 and 25% is measured for helium gas at a temperature of 85 K and with a density up to 0.07 mg/cm 3 (equivalent to a pressure of 430 mbar at room temperature). This density is almost two times higher than demonstrated up to now for RF ion repelling structures in helium gas. Given the operational and design parameters of the system, it is projected that this technology is useful up to a helium gas density of at least 0.2 mg/cm 3 .
A cryogenic stopping cell (CSC) has been commissioned with 238 U projectile fragments produced at 1000 MeV/u. The spatial isotopic separation in flight was performed with the FRS applying a monoenergetic degrader. For the first time, a stopping cell was operated with exotic nuclei at cryogenic temperatures (70 to 100 K). A helium stopping gas density of up to 0.05 mg/cm 3 was used, about two times higher than reached before for a stopping cell with RF ion repelling structures. An overall efficiency of up to 15%, a combined ion survival and extraction efficiency of about 50%, and extraction times of 24 ms were achieved for heavy α-decaying uranium fragments. Mass spectrometry with a multiple-reflection time-of-flight mass spectrometer has demonstrated the excellent cleanliness of the CSC. This setup has opened a new field for the spectroscopy of short-lived nuclei.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.