Numerical experiments using the Lee model were performed to study the neutron yield and soft x-ray emission from the IR-MPF-100 plasma focus using the current fitting technique. The mass sweeping factor and the current factor for the axial and radial phase were used to represent the imperfections encountered in experiments. All gross properties including the yields were realistically simulated once the computed and measured current profiles were well fitted. The computed neutron yield Y n was in agreement with the experimentally measured Y n at 20 kV (E 0 ∼ 30 kJ) charging voltage. The optimum computed neutron yield of Y n = 1.238 × 10 9 neutrons per shot was obtained at optimum physics parameters of the plasma focus operated with deuterium gas. It was also observed that no soft x-rays were emitted from the IR-MPF-100 plasma focus operated with argon gas due to the absence of helium-like and hydrogen-like ions at a low plasma temperature (∼0.094 keV) and axial speed (8.12 cm µs −1). However, the soft x-ray yield can be achieved by increasing the charging voltage, using a higher ratio of outer anode radius to inner anode radius c or shorter anode length z 0 , or using neon as the operating gas.
Plasma focus device gives simultaneous interaction between magnetic and electric field which results in exhibiting multi-radiation properties. Ion beam radiates from the system is significant for experimenting target material of interest in plasma focus research. Lee code model is used to simulate the numerical experiments on NX2-plasma focus device system using different applied voltage in the range 10 to 14 kV. The system is operating in Neon filled at an optimum pressure depending on the applied voltage used in the experiment. Results obtained are analysed and fitted with the experimental results for system validation. Good fitting on the numerical with the experimental results is obtained by incorporating mass shedding effects and current shedding factor. The range of current density obtained is in the range 1.6x108 to 7.3x109 Am-2 whilst the maximum ion beam energy is estimated to be 156 J
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.