We show, with the help of polarized neutrons, that the cubic magnets Fe1-xCoxSi with Dzyaloshinskii-Moriya interaction can be switched between left (for x=0.1, 0.15) and right (for x=0.2, 0.25, 0.3, 0.5) chiral states of the spin helix. The absolute structure was evaluated using x-ray diffraction. The crystals are shown to be enantiopure and the structural chirality changes from right handed for x<0.2 to left handed for x>0.2. These compounds are compared with the etalon sample of MnSi which is identified as having the left-handed chirality both in the magnetic and crystallographic sense.
Magnetic susceptibility measurements have shown that the compounds Mn(1-x)Fe(x)Ge are magnetically ordered through the whole range of concentrations x = [0.0,1.0]. Small-angle neutron scattering reveals the helical nature of the spin structure with a wave vector, which changes from its maximum (|k| = 2.3 nm(-1)) for pure MnGe, through its minimum (|k| → 0) at x(c) ≈ 0.75, to the value of |k| = 0.09 nm(-1) for pure FeGe. The macroscopic magnetic measurements confirm the ferromagnetic nature of the compound with x = x(c). The observed transformation of the helix structure to the ferromagnet at x = x(c) is explained by different signs of chirality for the compounds with x > x(c) and x
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.