The COVID-19 pandemic has compelled practically all higher education institutions to adopt online education tools over the previous 2 years. Online education has a huge potential to supplement or take the place of in-person instruction. However, there are certain drawbacks of online learning, such as the absence of classroom environment interaction and the difficulty in keeping track of students’ engagement and participation. In this study, a live virtual classroom was developed to aid students in their learning activities. The effectiveness of these live video classes was reported from both students and instructors, as well as the variables promoting their implementation within higher education institutions. One of the more significant findings to emerge from this study is that the instructors found it convenient, as they could readily check course participants understanding by studying their live video lectures. The second major finding was that students felt satisfaction with online learning while asking questions without interfering with the instructor’s presentation. Moreover, peers could also provide them with more expertise. However, the teaching process became dynamic, requiring the educator to pay close attention. The course participants also experienced anxiety when they were in front of other people. Additionally, both the instructor and the students need to be highly self-sufficient in technology.
Because the cost of operation and maintenance is lower than those of chemical treatments, the aerobic biological oxidation method used to treat wastewater is very effective. An oxidation ditch can be classified as progressive aeration-activated sludge capable of removing organic pollutants and also nitrogen and phosphorus. The overall goal of this research is to analyse influent, effluent, and operating data over a seven-year period (2014–2020) to better understand process performance, identify knowledge gaps, and suggest potential improvements for the operating efficiency of the wastewater treatment plant (WWTP) in Bishah Governorate, which works with oxidation ditch technology. An examination of historical influent, effluent, and operational data shows that the Bishah WWTP has consistently met the national and international guidelines for wastewater reuse in restricted and unrestricted irrigation. The effluent ratio of the biodegradable organic material (BOD5)/chemical oxygen demand (COD) values ranged from 0.3 to 0.51 with an average of 0.41. Significant Pearson correlation coefficients (bivariate) between physico-chemicals merit, especially in total coliforms form, BOD5 and ammonia. It could be concluded that the operational performance of a wastewater treatment plant with an oxidation ditch in Bishah is working well according to national and international standards.
Water demand per capita will rise in the Arab world as a result of climate change and population expansion. One of the most important aims in coping with population increase around the world is to conserve water supplies. As a result, the Kingdom of Saudi Arabia (KSA) constructed the Al Wajeed Water Treatment System to meet the demands of its southern population. This research aims to assess the drinking water quality produced from the Al Wajeed Water Treatment System. Monthly water samples were collected (January 2018 to January 2021) from the Al Wajeed Water Treatment Framework (4 sites), extending to governorates, Bishah`s distribution system (5 sites), and Tathleeth`s distribution system (7 sites). Water quality criteria, such as physical-, chemical-, and microbiological-parameters, revealed that the majority of water samples collected from the Al Wajeed Water Framework and its environs are of a good quality and matched the national and International standards. Few sites showed water quality criteria such as turbidity, fluoride, and total coliform, which did not comply with national and global standards. The obtained results explained the importance of monitoring and follow-up programs for drinking water criteria. In addition, they can help the authorities and stakeholders in the sustainable development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.