Objectives This study aimed to determine the diagnostic and prognostic value of urinary biomarkers of intrinsic acute kidney injury (AKI) when patients were triaged in the emergency department. Background Intrinsic AKI is associated with nephron injury and results in poor clinical outcomes. Several urinary biomarkers have been proposed to detect and measure intrinsic AKI. Methods In a multicenter prospective cohort study, 5 urinary biomarkers (urinary neutrophil gelatinase–associated lipocalin, kidney injury molecule-1, urinary liver-type fatty acid binding protein, urinary interleukin-18, and cystatin C) were measured in 1,635 unselected emergency department patients at the time of hospital admission. We determined whether the biomarkers diagnosed intrinsic AKI and predicted adverse outcomes during hospitalization. Results All biomarkers were elevated in intrinsic AKI, but urinary neutrophil gelatinase-associated lipocalin was most useful (81% specificity, 68% sensitivity at a 104-ng/ml cutoff) and predictive of the severity and duration of AKI. Intrinsic AKI was strongly associated with adverse in-hospital outcomes. Urinary neutrophil gelatinase-associated lipocalin and urinary kidney injury molecule 1 predicted a composite outcome of dialysis initiation or death during hospitalization, and both improved the net risk classification compared with conventional assessments. These biomarkers also identified a substantial subpopulation with low serum creatinine at hospital admission, but who were at risk of adverse events. Conclusion Urinary biomarkers of nephron damage enable prospective diagnostic and prognostic stratification in the emergency department.
Background-Hypertensive target organ damage, especially cardiac hypertrophy with heart failure and arrhythmia, is a major source of morbidity and mortality. Angiotensin II, a major mediator of hypertension and cardiac damage, has proinflammatory properties. Inflammation and activation of the immune system play a pivotal role in pathogenesis of hypertensive target organ damage. However, the role of immunosuppressive CD4
In established acute kidney injury (AKI), serum creatinine poorly differentiates prerenal and intrinsic AKI. A damage-associated nephron biomarker, neutrophil gelatinase-associated lipocalin (NGAL) could be a better discriminator. We tested the hypothesis that urinary NGAL distinguishes intrinsic and prerenal AKI, and tested its performance in the prediction of a composite outcome that included progression to a higher RIFLE (“risk, injury, failure, loss of function, end stage renal disease”) severity class, dialysis, or death. We measured urinary NGAL in 161 hospitalized patients with established AKI using a standardized clinical platform. We excluded 16 patients with postrenal obstruction or insufficient clinical information. Of the remaining 145 patients, 75 patients had intrinsic AKI, 32 patients had prerenal AKI, and 38 patients could not be classified. We found that urinary NGAL levels effectively discriminated intrinsic AKI from prerenal AKI (ROC 0.87, CI 0.81-0.94). An NGAL level >104 μg/L indicated intrinsic AKI (likelihood ratio 5.97), while an NGAL level <47 μg/L made intrinsic AKI unlikely (likelihood ratio 0.2). Patients experiencing the composite outcome had higher median urinary NGAL levels on inclusion (248.2 vs. 68.3 μg/L, p<0.001). In logistic regression analysis, NGAL independently predicted the composite outcome, when corrected for demographics, co-morbidities, creatinine, and RIFLE class. Hence, urinary NGAL is useful in classifying and stratifying patients with established AKI.
The pulmonary endothelin (ET) system has been implicated in the pathogenesis of chronic lung diseases such as pulmonary hypertension, asthma, chronic obstructive lung disease, idiopathic pulmonary fibrosis, and bronchiolitis obliterans. However, the etiologic role of ET-1 in these diseases has not yet been established. We recently demonstrated that ET-1 transgenic mice, generated using the human prepro-ET-1 expression cassette including the cis-acting transcriptional regulatory elements, had predominant transgene expression in lung, brain, and kidney. We used these mice in the present study to analyze the pathophysiologic consequences of long-term pulmonary overexpression of ET-1. We found that ET-1 overexpression in the lungs did not result in significant pulmonary hypertension, but did result in development of a progressive pulmonary fibrosis and recruitment of inflammatory cells (predominantly CD4-positive cells). Our study provides evidence that a long-term activated pulmonary ET system, without any other stimuli, produces chronic lymphocytic inflammation and lung fibrosis. This suggests that overexpression of ET-1 may be a central event in the pathogenesis of lung diseases associated with fibrosis and chronic inflammation, such as pulmonary fibrosis and bronchiolitis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.