During Arabidopsis embryo development, cotyledon primordia are generated at transition stage from precursor cells that are not derived from the embryonic shoot apical meristem (SAM). To date, it is not known which genes specifically instruct these precursor cells to elaborate cotyledons, nor is the role of auxin in cotyledon development clear. In laternemutants, the cotyledons are precisely deleted, yet the hypocotyl and root are unaffected. The laterne phenotype is caused by a combination of two mutations: one in the PINOID (PID) gene and another mutation in a novel locus designated ENHANCER OF PINOID (ENP). The expression domains of shoot apex organising genes such as SHOOT MERISTEMLESS (STM) extend along the entire apical region of laterne embryos. However, analysis of pid enp stm triple mutants shows that ectopic activity of STM does not appear to cause cotyledon obliteration. This is exclusively caused by enp in concert with pid. In pinoid embryos, reversal of polarity of the PIN1 auxin transport facilitator in the apex is only occasional, explaining irregular auxin maxima in the cotyledon tips. By contrast, polarity of PIN1:GFP is completely reversed to basal position in the epidermal layer of the laterne embryo. Consequently auxin, which is believed to be essential for organ formation, fails to accumulate in the apex. This strongly suggests that ENP specifically regulates cotyledon development through control of PIN1 polarity in concert with PID.
SummaryWe have analysed the centromere 1 (CEN1) of Arabidopsis thaliana by integration of genetic, sequence and¯uorescence in situ hybridisation (FISH) data. CEN1 is considered to include the centromeric core and the¯anking left and right pericentromeric regions, which are distinct parts by structural and/or functional properties. CEN1 pericentromeres are composed of different dispersed repetitive elements, sometimes interrupted by functional genes. In contrast the CEN1 core is more uniformly structured harbouring only two different repeats.The presented analysis reveals aspects concerning distribution and effects of the uniformly shaped heterochromatin, which covers all CEN1 regions. A lethal mutation tightly linked to CEN1 enabled us to measure recombination frequencies within the heterochromatin in detail. In the left pericentromere, the change from eu-to heterochromatin is accompanied by a gradual change in sequence composition but by an extreme change in recombination frequency (from normal to 53-fold decrease) which takes place within a small region spanning 15 kb. Generally, heterochromatin is known to suppress recombination. However, the same analysis reveals that left and right pericentromere, though similar in sequence composition, differ markedly in suppression (53-fold versus 10-fold). The centromeric core exhibits at least 200-fold if not complete suppression. We discuss whether differences in (®ne) composition re¯ect quantitative and qualitative differences in binding sites for heterochromatin proteins and in turn render different functional properties. Based on the presented data we estimate the sizes of Arabidopsis centromeres. These are typical for regional centromeres of higher eukaryotes and range from 4.4 Mb (CEN1) to 3.55 Mb (CEN4).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.