BackgroundPiscine reovirus (PRV) has been associated with the serious disease known as Heart and Skeletal Muscle Inflammation (HSMI) in cultured Atlantic salmon Salmo salar in Norway. PRV is also prevalent in wild and farmed salmon without overt disease manifestations, suggesting multifactorial triggers or PRV variant-specific factors are required to initiate disease. In this study, we explore the head kidney transcriptome of Sockeye salmon Oncorhynchus nerka during early PRV infection to identify host responses in the absence of disease in hopes of elucidating mechanisms by which PRV may directly alter host functions and contribute to the development of a disease state. We further investigate the role of PRV as a coinfecting agent following superinfection with infectious hematopoietic necrosis virus (IHNV) – a highly pathogenic rhabdovirus endemic to the west coast of North America.ResultsChallenge of Sockeye salmon with PRV resulted in high quantities of viral transcripts to become present in the blood and kidney of infected fish without manifestations of disease. De novo transcriptome assembly of over 2.3 billion paired RNA-seq reads from the head kidneys of 36 fish identified more than 320,000 putative unigenes, of which less than 20 were suggested to be differentially expressed in response to PRV at either 2 or 3 weeks post challenge by DESeq2 and edgeR analysis. Of these, only one, Ependymin, was confirmed to be differentially expressed by qPCR in an expanded sample set. In contrast, IHNV induced substantial transcriptional changes (differential expression of > 20,000 unigenes) which included transcripts involved in antiviral and inflammatory response pathways. Prior infection with PRV had no significant effect on host responses to superinfecting IHNV, nor did host responses initiated by IHNV exposure influence increasing PRV loads.ConclusionsPRV does not substantially alter the head kidney transcriptome of Sockeye salmon during early (2 to 3 week) infection and dissemination in a period of significant increasing viral load, nor does the presence of PRV change the host transcriptional response to an IHNV superinfection. Further, concurrent infections of PRV and IHNV do not appear to significantly influence the infectivity or severity of IHNV associated disease, or conversely, PRV load.Electronic supplementary materialThe online version of this article (doi:10.1186/s12864-016-3196-y) contains supplementary material, which is available to authorized users.
Bacterial Kidney Disease (BKD), which is caused by a Gram-positive, intracellular bacterial pathogen (Renibacterium salmoninarum), affects salmonids including Atlantic salmon (Salmo salar). However, the transcriptome response of Atlantic salmon to BKD remained unknown before the current study. We used a 44K salmonid microarray platform to characterise the global gene expression response of Atlantic salmon to BKD. Fish (∼54 g) were injected with a dose of R. salmoninarum (H-2 strain, 2 × 10 8 CFU per fish) or sterile medium (control), and then head kidney samples were collected at 13 days post-infection/injection (dpi). Firstly, infection levels of individuals were determined through quantifying the R. salmoninarum level by RNA-based TaqMan qPCR assays. Thereafter, based on the qPCR results for infection level, fish (n = 5) that showed no (control), higher (H-BKD), or lower (L-BKD) infection level at 13 dpi were subjected to microarray analyses. We identified 6,766 and 7,729 differentially expressed probes in the H-BKD and L-BKD groups, respectively. There were 357 probes responsive to the infection level (H-BKD vs. L-BKD). Several adaptive and innate immune processes were dysregulated in R. salmoninarum-infected Atlantic salmon. Adaptive immune pathways associated with lymphocyte differentiation and activation (e.g., lymphocyte chemotaxis, T-cell activation, and immunoglobulin secretion), as well as antigen-presenting cell functions, were shown to be differentially regulated in response to BKD. The infection level-responsive transcripts were related to several mechanisms such as the JAK-STAT signalling pathway, B-cell differentiation and interleukin-1 responses. Sixty-five microarray-identified transcripts were subjected to qPCR validation, and they showed the same fold-change direction as microarray results. The qPCRvalidated transcripts studied herein play putative roles in various immune processes including pathogen recognition (e.g., tlr5), antibacterial activity (e.g., hamp and camp), regulation of immune responses (e.g., tnfrsf11b and socs1), T-/B-cell differentiation (e.g., ccl4, irf1 and ccr5), T-cell functions (e.g., rnf144a, il13ra1b and tnfrsf6b), and Eslamloo et al. Atlantic Salmon Response to BKD antigen-presenting cell functions (e.g., fcgr1). The present study revealed diverse immune mechanisms dysregulated by R. salmoninarum in Atlantic salmon, and enhanced the current understanding of Atlantic salmon response to BKD. The identified biomarker genes can be used for future studies on improving the resistance of Atlantic salmon to BKD.
vitamin D 3 , cholecalciferol, induced anti-bacterial innate immunity pathways in Atlantic salmon primary macrophages, suggesting that its utilization as a component of a healthy aquafeed diet in Atlantic salmon could enhance the immune response against A. salmonicida.
MicroRNAs (miRNAs) are known to play important immunoregulatory roles in teleosts, although miRNAs involved in the antiviral immune response of Atlantic cod (Gadus morhua) were previously uncharacterised. Using deep sequencing and qPCR, the present study was conducted to identify miRNAs responsive to the viral mimic, polyriboinosinic polyribocytidylic acid (pIC) in Atlantic cod macrophages. Macrophage samples isolated from Atlantic cod (n=3) and treated with pIC or phosphate buffered saline (PBS control) for 24 and 72h were used for miRNA profiling. Following deep sequencing, DESeq2 analyses identified four (miR-731-3p, miR-125b-3-3p, miR-150-3p and miR-462-3p) and two (miR-2188-3p and miR-462-3p) significantly differentially expressed miRNAs at 24 and 72h post-stimulation (HPS), respectively. Sequencing-identified miRNAs were subjected to qPCR validation using a larger number of biological replicates (n=6) exposed to pIC or PBS over time (i.e. 12, 24, 48 and 72 HPS). As in sequencing, miR-731-3p, miR-462-3p and miR-2188-3p showed significant up-regulation by pIC. The sequencing results were not qPCR-validated for miR-125b-3-3p and miR-150-3p as up- and down-regulated miRNAs at 24 HPS, respectively; however, qPCR results showed significant up-regulation in response to pIC stimulation at later time points (i.e. 48 and/or 72 HPS). We also used qPCR to assess the expression of other miRNAs that were previously shown as immune responsive in other vertebrates. qPCR results at 48 and/or 72 HPS revealed that miR-128-3-5p, miR-214-1-5p and miR-451-3p were induced by pIC, whereas miR-30b-3p and miR-199-1-3p expression were repressed in response to pIC. The present study identified ten pIC-stimulated miRNAs, suggesting them as important in antiviral immune responses of Atlantic cod macrophages. Some pIC-responsive miRNAs identified in this study were predicted to target putative immune-related genes of Atlantic cod (e.g. miR-30b-3p targeting herc4), although the regulatory functions of these miRNAs need to be validated by future studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.