The fetal Doppler Ultrasound (DUS) is commonly used for monitoring fetal heart rate and can also be used for identifying the event timings of fetal cardiac valve motions. In early-stage fetuses, the detected Doppler signal suffers from noise and signal loss due to the fetal movements and changing fetal location during the measurement procedure. The fetal cardiac intervals, which can be estimated by measuring the fetal cardiac event timings, are the most important markers of fetal development and well-being. To advance DUS-based fetal monitoring methods, several powerful and well-advanced signal processing and machine learning methods have recently been developed. This review provides an overview of the existing techniques used in fetal cardiac activity monitoring and a comprehensive survey on fetal cardiac Doppler signal processing frameworks. The review is structured with a focus on their shortcomings and advantages, which helps in understanding fetal Doppler cardiogram signal processing methods and the related Doppler signal analysis procedures by providing valuable clinical information. Finally, a set of recommendations are suggested for future research directions and the use of fetal cardiac Doppler signal analysis, processing, and modeling to address the underlying challenges.
Perinatal morbidity and mortality can be reduced when any cardiac abnormalities during a pregnancy are diagnosed early. Doppler Ultrasound Signals (DUS) are often used to monitor the heart rate of a fetus and they can also be used to identify the timing events of fetal cardiac valve motions. This paper proposed a novel, non-invasive technique which can be used to identify the fetal cardiac timing events based upon the analysis of fetal DUS (based upon 66 normal subjects belonging to three differing age groups) which can later be used to estimate fetal cardiac intervals from a DUS signal. The foundation of this method is a novel decomposition method referred to as Swarm Decomposition (SWD) which makes it possible for the frequency contents of Doppler signals to be associated with cardiac valve motions. These motions include the opening (o) and closing (c) of Aortic (A) and Mitral (M) valves. When compared the SWD method results to the Empirical Mode Decomposition for the validation, the fetal cardiac timings were estimated successfully when isolating the constituent parts of analyzed DUS signals with reduced complexity compared to EMD method. Pulsed Doppler images are used in order to verify the estimated timings. Three fetal age groups were assessed in terms of their cardiac intervals: 16–29, 30–35, and 36–41 weeks. The time intervals (Systolic Time Interval, STI), (Isovolumic Relaxation Time, IRT), and (Pre-ejection Period, PEP) were found to change significantly ( p < 0.05) across the three age groups. The evaluation of fetal cardiac performance can be enhanced, given that these findings can be leveraged as sensitive markers throughout the process.
Early diagnosis of the cardiac abnormalities during the pregnancy may reduce the risk of perinatal morbidity and mortality. Doppler ultrasound signals (DUS), which is commonly used for monitoring the fetal heart rate, can also be used for identifying the event timing of fetal cardiac valve motions. In this paper, we propose a non-invasive technique to identify the fetal cardiac timing events on the basis of analysis of fetal DUS (5 normal subjects, in both early and late gestational ages). We proposed using the swarm decomposition technique which enabled the frequency contents of the Doppler signals to be linked to the opening and closing of the heart's valves (aortic and mitral). In the early gestational age, the time intervals from R peak of fetal ECG to opening and closing of aortic valve were found to be 59.4±1.9 ms and 218.8±2.4 ms respectively and in the late gestational age 65.4±10 ms and 218.1±3.4 ms respectively. The rest of the identified timing were mentioned in the results and discussion section. Decomposing the fetal Doppler signal using the swarm intelligence achieved an excellent extraction of the fetal cardiac timing events.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.