Sortilin (also known as neurotensin receptor 3) is a multitasking protein implicated in numerous pathophysiological processes, including cancer development, cardiovascular impairment, Alzheimer-type dementia, and depression. Although the definitive role of sortilin in human solid and hematological malignancies has been evidenced, few articles reviewed the task. The aim of the current review is to unravel the mechanisms by which sortilin controls oncogenicity and cancer progression; and also to summarize and discuss the original data obtained from international research laboratories on this topic. Questions on how sortilin is involving in the impairment of cell junctions, in exosomes composition and release, as well as in the regulation of epidermal growth factor receptor trafficking are also responded. In addition, we provide a special focus on the regulatory role of sortilin in signal transduction by either neurotrophins or neurotensin in normal and malignant cells. The relevance of sortilin with normal and cancer stem cells is also discussed. The last section provides a general overview of sortilin applications as a diagnostic and prognostic biomarker in the context of cancer detection. Finally, we comment on the future research aspects in which the field of cancer diagnosis, prognosis, and therapy might be developed.
Human T-cell lymphotropic virus 1 (HTLV-1) is associated with two progressive diseases: HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) and adult T-cell leukemia/lymphoma (ATLL). Although HTLV-1 proviral load (PVL) has been introduced as a risk factor for these diseases' progression, it is not sufficient on its own to yield an accurate estimation of the outcome of the infection. In the present study, PVL and HTLV-1 basic leucine zipper factor (HBZ) expression level as viral factors, and IFN λ3 as a host factor, were evaluated in HAM/TSP patients and HTLV-1 asymptomatic carriers (ACs). During 2014-2015, 12 HAM/TSP patients and 18 ACs who had been referred to the HTLV-1 Clinic, Ghaem Hospital, Mashhad University of Medical Sciences (MUMS), Mashhad, Iran, were enrolled in this study. Peripheral blood mononuclear cells (PBMCs) were isolated and the DNA and mRNA were extracted for quantification of HBZ, IFN λ3 expression, and PVL using real-time PCR (TaqMan method). Although the PVL was higher in the HAM/TSP group, with a 94% confidence interval, there were no considerable differences in terms of HBZ mRNA and PVL between ACs and HAM patients. IFN λ3 expression in the HAM/TSP group was significantly higher than in the ACs (P = 0.02). To the best of our knowledge, no study has evaluated the expression level of IFN λ3 in HTLV-1 positive patients. The immune response against HTLV-1 viral antigens and virulent factors will therefore further refine our knowledge of interactions between the virus and host in the pathogenesis of HTLV-1-related disorders. The virus PVL and the host IFN λ3 can be used as pathogenic factors of HTLV-1 infected patients at risk of HAM/TSP manifestation. J. Med. Virol. 89:1102-1107, 2017. © 2016 Wiley Periodicals, Inc.
Background The unique expression of fibromodulin (FMOD) in patients with chronic lymphocytic leukemia (CLL) has been previously reported. Detecting FMOD in CLL patients using specific anti-FMOD mAbs might provide a promising method in detection, monitoring, and prognosis of CLL. Objectives In this study, we aimed for producing specific antibodies against FMOD to facilitate further cohort study of CLL, thus addressing FMOD as a potential target of detection. Materials and Methods Human FMOD gene (1087 bp) was extracted from genome of the CLL patients, and was cloned into the expression vector of pET-22b (+). The recombinant FMOD protein (rFMOD) was expressed in Escherichia coli. The purified rFMOD protein was used as an immunogen in rabbit and mice. Hybridoma technology was used to develop the monoclonal antibodies (mAbs). Polyclonal antibody (pAb) was purified from the rabbit sera using affinity column. The reactivity of anti-FMOD antibodies was assessed in ELISA, immunocytochemistry (ICC) and Western blot. Results ICC results showed that the anti-FMOD antibodies specifically detected FMOD in CLL PBMCs and cell lines. The developed anti-FMOD pAb detected FMOD in CLL lysates, compared to healthy PBMCs, in Western blot and ELISA. Conclusions The developed anti-FMOD mAbs, and pAb specifically detect FMOD in CLL samples and might be used as research tools for further investigations in CLL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.