Aptamer-mediated targeted delivery is a promising advanced therapeutic delivery strategy with the potential to provide site-directed cyto-toxicity to malignant cells. However, effective translation of preclinical aptamer-navigated targeted delivery data into clinical success has been challenged by several biophysical and biochemical factors including rapid renal clearance, endonuclease-induced degradation, and cell membrane electrostatic repulsion. Aptamer-conjugated biopolymer systems represent new and smart drug carriers capable of delivering adequate amounts of drug molecules sufficient to elicit effective in vivo therapies at target sites in a controlled and sustained drug release pattern. In this work, a novel co-polymeric multi-layer BSA-loaded thrombin aptamer-conjugated PLGA-PEI (DPAP) formulation was synthesized using a w/o/w double emulsion and characterized layer-by-layer in vivo. DLS analysis of the DPAP particles showed a positively charged DPAP particulate system with a D[4,3] average hydrodynamic size of $0.866 mm and a zeta potential of þ9.85 mV. The zeta potential and D[4,3] average hydrodynamic size of DPAP layered compartments demonstrated pH-dependence but are not temperature dependent. The ionic strength of the binding medium affected the degradation and release rates of DPAP micro-particles. A strong binding strength and shielding effect of DPAP towards encapsulated BSA molecules was observed under increasing ionic strength. Thermogravimetric analysis showed that the DPAP formulation decomposes at $300 8C, demonstrating the thermal stability of the polymer composite for effective storage in temperate environments. The data from this study is vital to engineer the interactions between DPAP polymeric system and cellular structures in order to enhance targeting events. While the DPAP construct demonstrates a great potential for targeted delivery, more in vivo delivery work is essential to prove its pre-clinical targeting capability.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.