Three approaches for instantaneous wide-area analysis of ship-radiated underwater sound, each focusing on a different aspect of that sound, received on a large-aperture densely-sampled coherent hydrophone array have been developed. (i) Ship’s narrowband machinery tonal sound is analyzed via temporal coherence using Mean Magnitude-Squared Coherence (MMSC) calculations. (ii) Ship’s broadband amplitude-modulated cavitation noise is examined using Cyclic Spectral Coherence (CSC) analysis that provides estimates for propeller blade pass rotation frequency, shaft rotation frequency, and hence the number of propeller blades. (iii) Mean power spectral densities (PSD) averaged across broad bandwidths are calculated in order to detect acoustically energetic ships. Each of these techniques are applied after beamforming of the received acoustic signals on a coherent hydrophone array, leading to significantly enhanced signal-to-noise ratios for simultaneous detection, bearing-time estimation and acoustic signature characterization of multiple ships over continental-shelf scale regions. The approaches are illustrated with underwater recordings of a 160-element coherent hydrophone array for six ocean vessels, that are located at a variety of bearings and ranges out to 200 km from the array, in the Norwegian Sea in February 2014. The CSC approach is shown to also be useful for automatic detection and bearing-time estimation of repetitive marine mammal vocalizations, providing estimates for inter-pulse-train and inter-pulse intervals from CSC spectra cyclic fundamental and first recurring peak frequencies respectively.
To better understand spawning vocalizations of Norwegian coastal cod (Gadus morhua), a prototype eight-element coherent hydrophone array was deployed in stationary vertical and towed horizontal modes to monitor cod sounds during an experiment in spring 2019. Depth distribution of cod aggregations was monitored concurrently with an ultrasonic echosounder. Cod vocalizations recorded on the hydrophone array are analysed to provide time–frequency characteristics, and source level distribution after correcting for one-way transmission losses from cod locations to the hydrophone array. The recorded cod vocalization frequencies range from ∼20 to 600 Hz with a peak power frequency of ∼60 Hz, average duration of 300 ms, and mean source level of 163.5 ± 7.9 dB re 1 μPa at 1 m. Spatial dependence of received cod vocalization rates is estimated using hydrophone array measurements as the array is towed horizontally from deeper surrounding waters to shallow water inlet areas of the experimental site. The bathymetric-dependent probability of detection regions for cod vocalizations are quantified and are found to be significantly reduced in shallow-water areas of the inlet. We show that the towable hydrophone array deployed from a moving vessel is invaluable because it can survey cod vocalization activity at multiple locations, providing continuous spatial coverage that is complementary to fixed sensor systems that provide continuous temporal coverage at a given location.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.