The addition of nutrients and accumulation of metabolites in a fed-batch culture of Chinese hamster ovary (CHO) cells leads to an increase in extracellular osmolality in late stage culture. Herein, we explore the effect of osmolality on CHO cell growth, specific monoclonal antibody (mAb) productivity and glycosylation achieved with the addition of NaCl or the supplementation of a commercial feed. Although both methods lead to an increase in specific antibody productivity, they have different effects on cell growth and antibody production. Osmolality modulation using NaCl up to 470 mOsm kg−1 had a consistently positive effect on specific antibody productivity and titre. The addition of the commercial feed achieved variable results: specific mAb productivity was increased, yet cell growth rate was significantly compromised at high osmolality values. As a result, Feed C addition to 410 mOsm kg−1 was the only condition that achieved a significantly higher mAb titre compared to the control. Additionally, Feed C supplementation resulted in a significant reduction in galactosylated antibody structures. Cell volume was found to be positively correlated to osmolality; however, osmolality alone could not account for observed changes in average cell diameter without considering cell cycle variations. These results help delineate the overall effect of osmolality on titre and highlight the potentially negative effect of overfeeding on cell growth.
Downstream processing of protein products of mammalian cell culture currently accounts for the largest fraction of the total production cost. A major challenge is the removal of host cell proteins, which are cell-derived impurities. Host cell proteins are potentially immunogenic and can compromise product integrity during processing and hold-up steps. There is an increasing body of evidence that the type of host cell proteins present in recombinant protein preparations is a function of cell culture conditions and handling of the harvest cell culture fluid. This, in turn, can affect the performance of downstream purification steps as certain species are difficult to remove and may require bespoke process solutions. Herein, we review recent research on the interplay between upstream process conditions, host cell protein composition and their downstream removal in antibody production processes, identifying opportunities for increasing process understanding and control. We further highlight advances in analytical and computational techniques that can enable the application of quality by design.
Bioactive aminooxime ligands based on optically pure (R)-limonene have been synthesized in two steps. Their ruthenium (II) cationic water-soluble complex was prepared by a reaction between dichloro (para-cymene) ruthenium (II) dimers and aminooxime ligands in a 1:2 molar ratio. Antibacterial and antibiofilm activities of the synthetized complex were assessed against Escherichia coli, Staphylococcus aureus, Listeria monocytogenes, and Enterococcus faecalis. The results revealed that the ruthenium (II) complex has higher antibacterial and antibiofilm activities in comparison with free ligands or the enantiopure (R)-limonene. Moreover, microencapsulation of this complex reduced its cytotoxicity and improved their minimum inhibitory concentration and antibiofilm activity toward the considered bacteria. The ruthenium (II) complex targets the bacterial cell membrane, which leads to rapid leakage of intracellular potassium. Our study suggests that the developed ruthenium (II) complexes could be useful as an alternative to conventional disinfectants.
High scientific output has made two Saudi universities perform well in academic ranking systems. The improvement in university ranking is generally observed in other indicators such as the innovation index, the abundance of cutting-edge research, and the number and success of patents and startups. In this paper, the impact of research output of highly cited researchers at two Saudi public universities is investigated from different standpoints and compared with international examples. Many citation databases, ranking systems and international indicators have been used in this paper to thoroughly discuss the research and development landscape in Saudi Arabia. Saudi public universities have the greatest number of highly cited researchers who mostly have another international affiliation. The Saudi academic patent number has increased dramatically since 2014, with minimum improvement in the country’s innovation and startups performance. Many of the Saudi highly cited papers are scattered in the literature with neither a specific targeted field nor follow-up studies. The role of the Saudi universities in industrial collaboration, technology advancement and economic prosperity is less than expected considering the Saudi position on the international stage. Entrepreneurship, innovation and research commercialisation ought to be supported by more private and public initiatives. Transparency, critical thinking, and accountability are needed the most in Saudi academic institutes. Recommendations are given for improving the research culture and following the best practice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.