For the development of new therapies, proof-of-concept studies in large animal models that share clinical features with their human counterparts represent a pivotal step. For inherited retinal dystrophies primarily involving photoreceptor cells, the efficacy of gene therapy has been demonstrated in canine models of stationary cone dystrophies and progressive rod-cone dystrophies but not in large models of progressive cone-rod dystrophies, another important cause of blindness. To address the last issue, we evaluated gene therapy in the retinitis pigmentosa GTPase regulator interacting protein 1 (RPGRIP1)-deficient dog, a model exhibiting a severe cone-rod dystrophy similar to that seen in humans. Subretinal injection of AAV5 (n = 5) or AAV8 (n = 2) encoding the canine Rpgrip1 improved photoreceptor survival in transduced areas of treated retinas. Cone function was significantly and stably rescued in all treated eyes (18-72% of those recorded in normal eyes) up to 24 months postinjection. Rod function was also preserved (22-29% of baseline function) in four of the five treated dogs up to 24 months postinjection. No detectable rod function remained in untreated contralateral eyes. More importantly, treatment preserved bright- and dim-light vision. Efficacy of gene therapy in this large animal model of cone-rod dystrophy provides great promise for human treatment.
Mutations in the myosin VIIa gene cause Usher syndrome type IB (USH1B), characterized by deaf-blindness. A delay of opsin trafficking has been observed in the retinal photoreceptor cells of myosin VIIa-deficient mice. We identified spectrin βV, the mammalian β-heavy spectrin, as a myosin VIIa- and rhodopsin-interacting partner in photoreceptor cells. Spectrin βV displays a polarized distribution from the Golgi apparatus to the base of the outer segment, which, unlike that of other β spectrins, matches the trafficking route of opsin and other phototransduction proteins. Formation of spectrin βV-rhodopsin complex could be detected in the differentiating photoreceptors as soon as their outer segment emerges. A failure of the spectrin βV-mediated coupling between myosin VIIa and opsin molecules thus probably accounts for the opsin transport delay in myosin VIIa-deficient mice. We showed that spectrin βV also associates with two USH1 proteins, sans (USH1G) and harmonin (USH1C). Spectrins are supposed to function as heteromers of α and β subunits, but fluorescence resonance energy transfer and in vitro binding experiments indicated that spectrin βV can also form homodimers, which likely supports its αII-independent βV functions. Finally, consistent with its distribution along the connecting cilia axonemes, spectrin βV binds to several subunits of the microtubule-based motor proteins, kinesin II and the dynein complex. We therefore suggest that spectrin βV homomers couple some USH1 proteins, opsin and other phototransduction proteins to both actin- and microtubule-based motors, thereby contributing to their transport towards the photoreceptor outer disks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.