The staggering development of cyber threats has propelled experts, professionals and specialists in the field of security into the development of more dependable protection systems, including effective intrusion detection system (IDS) mechanisms which are equipped for boosting accurately detected threats and limiting erroneously detected threats simultaneously. Nonetheless, the proficiency of the IDS framework depends essentially on extracted features from network traffic and an effective classifier of the traffic into abnormal or normal traffic. The prime impetus of this study is to increase the performance of the IDS on networks by building a two-phase framework to reinforce and subsequently enhance detection rate and diminish the rate of false alarm. The initial stage utilizes the developed algorithm of a proficient wrapperapproach-based feature selection which is created on a multi-objective BAT algorithm (MOBBAT). The subsequent stage utilizes the features obtained from the initial stage to categorize the traffic based on the newly upgraded BAT algorithm (EBAT) for training multilayer perceptron (EBATMLP), to improve the IDS performance. The resulting methodology is known as the (MOB-EBATMLP). The efficiency of our proposition has been assessed by utilizing the mainstream benchmarked datasets: NLS-KDD, ISCX2012, UNSW-NB15, KDD CUP 1999, and CICIDS2017 which are established as standard datasets for evaluating IDS. The outcome of our experimental analysis demonstrates a noteworthy advancement in network IDS above other techniques.
INDEX TERMSIntrusion detection system (IDS), bat algorithm (BAT), metaheuristic algorithm (MA), feature selection (FS), multi-objective optimization (MOO), multilayer perceptron (MLP)
Coherent motions depict the individuals’ collective movements in widely existing moving crowds in physical, biological, and other systems. In recent years, similarity-based clustering algorithms, particularly the Coherent Filtering (CF) clustering approach, have accomplished wide-scale popularity and acceptance in the field of coherent motion detection. In this work, a tracklet-before-clustering initialization strategy is introduced to enhance coherent motion detection. Moreover, a Hierarchical Tracklet Association (HTA) algorithm is proposed to address the disconnected KLT tracklets problem of the input motion feature, thereby making proper trajectories repair to optimize the CF performance of the moving crowd clustering. The experimental results showed that the proposed method is effective and capable of extracting significant motion patterns taken from crowd scenes. Quantitative evaluation methods, such as Purity, Normalized Mutual Information Index (NMI), Rand Index (RI), and F-measure (Fm), were conducted on real-world data using a huge number of video clips. This work has established a key, initial step toward achieving rich pattern recognition.
Networks are strained by spam, which also overloads email servers and blocks mailboxes with unwanted messages and files. Setting the protective level for spam filtering might become even more crucial for email users when malicious steps are taken since they must deal with an increase in the number of valid communications being marked as spam. By finding patterns in email communications, spam detection systems (SDS) have been developed to keep track of spammers and filter email activity. SDS has also enhanced the tool for detecting spam by reducing the rate of false positives and increasing the accuracy of detection. The difficulty with spam classifiers is the abundance of features. The importance of feature selection (FS) comes from its role in directing the feature selection algorithm's search for ways to improve the SDS's classification performance and accuracy. As a means of enhancing the performance of the SDS, we use a wrapper technique in this study that is based on the multi-objective grasshopper optimization algorithm (MOGOA) for feature extraction and the recently revised EGOA algorithm for multilayer perceptron (MLP) training. The suggested system's performance was verified using the SpamBase, SpamAssassin, and UK-2011 datasets. Our research showed that our novel approach outperformed a variety of established practices in the literature by as much as 97.5%, 98.3%, and 96.4% respectively.
INDEX TERMSSpam detection system (SDS), grasshopper optimization algorithm (GOA), feature selection (FS), multi-objective optimization (MOO), multilayer perceptron (MLP)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.