Antibiotic resistance is an eminent threat for the survival of mankind. Nosocomial infections caused by multidrug resistant microorganisms are a reason for morbidity and mortality worldwide. Plant-based antimicrobial agents are based on synergistic mechanisms which prevent resistance and have been used for centuries against ailments. We suggest the use of cost-effective, eco-friendly Aloe Vera Barbadensis Miller (AV)-iodine biomaterials as a new generation of antimicrobial agents. In a facile, one-pot synthesis, we encapsulated fresh AV gel with polyvinylpyrrolidone (PVP) as a stabilizing agent and incorporated iodine moieties in the form of iodine (I2) and sodium iodide (NaI) into the polymer matrix. Ultraviolet-visible spectroscopy (UV-Vis), Fourier transform infrared spectroscopy (FT-IR), x-ray diffraction (XRD), microstructural analysis by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) verified the composition of AV-PVP-I2, AV-PVP-I2-NaI. AV, AV-PVP, AV-PVP-I2, AV-PVP-I2-NaI, and AV-PVP-NaI were tested in-vitro by disc diffusion assay and dip-coated on polyglycolic acid (PGA) sutures against ten microbial reference strains. All the tested pathogens were more susceptible towards AV-PVP-I2 due to the inclusion of “smart” triiodides with halogen bonding in vitro and on dip-coated sutures. The biocomplexes AV-PVP-I2, AV-PVP-I2-NaI showed remarkable antimicrobial properties. “Smart” biohybrids with triiodide inclusions have excellent antifungal and promising antimicrobial activities, with potential use against surgical site infections (SSI) and as disinfecting agents.
Multi-drug resistant pathogens are a rising danger for the future of mankind. Iodine (I2) is a centuries-old microbicide, but leads to skin discoloration, irritation, and uncontrolled iodine release. Plants rich in phytochemicals have a long history in basic health care. Aloe Vera Barbadensis Miller (AV) and Salvia officinalis L. (Sage) are effectively utilized against different ailments. Previously, we investigated the antimicrobial activities of smart triiodides and iodinated AV hybrids. In this work, we combined iodine with Sage extracts and pure AV gel with polyvinylpyrrolidone (PVP) as an encapsulating and stabilizing agent. Fourier transform infrared spectroscopy (FT-IR), Ultraviolet-visible spectroscopy (UV-Vis), Surface-Enhanced Raman Spectroscopy (SERS), microstructural analysis by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and X-Ray-Diffraction (XRD) analysis verified the composition of AV-PVP-Sage-I2. Antimicrobial properties were investigated by disc diffusion method against 10 reference microbial strains in comparison to gentamicin and nystatin. We impregnated surgical sutures with our biohybrid and tested their inhibitory effects. AV-PVP-Sage-I2 showed excellent to intermediate antimicrobial activity in discs and sutures. The iodine within the polymeric biomaterial AV-PVP-Sage-I2 and the synergistic action of the two plant extracts enhanced the microbial inhibition. Our compound has potential for use as an antifungal agent, disinfectant and coating material on sutures to prevent surgical site infections.
The emergence of resistant pathogens is a burden on mankind and threatens the existence of our species. Natural and plant-derived antimicrobial agents need to be developed in the race against antibiotic resistance. Nanotechnology is a promising approach with a variety of products. Biosynthesized silver nanoparticles (AgNP) have good antimicrobial activity. We prepared AgNPs with trans-cinnamic acid (TCA) and povidone-iodine (PI) with increased antimicrobial activity. We synthesized also AgNPs with natural cinnamon bark extract (Cinn) in combination with PI and coated biodegradable Polyglycolic Acid (PGA) sutures with the new materials separately. These compounds (TCA-AgNP, TCA-AgNP-PI, Cinn-AgNP, and Cinn-AgNP-PI) and their dip-coated PGA sutures were tested against 10 reference strains of microorganisms and five antibiotics by zone inhibition with disc-and agar-well-diffusion methods. The new compounds TCA-AgNP-PI and Cinn-AgNP-PI are broad spectrum microbicidal agents and therefore potential coating materials for sutures to prevent Surgical Site Infections (SSI). TCA-AgNP-PI inhibits the studied pathogens stronger than Cinn-AgNP-PI in-vitro and on coated sutures. Dynamic light scattering (DLS), ultraviolet-visible spectroscopy (UV-Vis), Fourier Transform infrared spectroscopy (FT-IR), Raman, X-ray diffraction (XRD), microstructural analysis by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) confirmed the composition of TCA-AgNP-PI and Cinn-AgNP-PI. Smart solutions involving hybrid materials based on synergistic antimicrobial action have promising future perspectives to combat resistant microorganisms.Pharmaceutics 2020, 12, 361 2 of 36 20,000 related deaths in the United States in 2017 only and remains to be one of the important infection-associated mortality reasons [11,12]. The formation of biofilms on biotic and abiotic surfaces [13] paved the way for biofilm antibiotic tolerance as another major health threat [14,15]. This additional problem hampers the treatment of infections, most often gives rise to chronic infections, in the worst case to therapeutic failure, severe morbidity, and mortality [4]. More than 80% of microbial infections are caused by microbial biofilm formation and pose a severe health risk because treatment with antibiotics remains ineffective [16]. The incidence of chronic wound infections is increasing globally to alarming levels [17]. Chronic wounds are marked by high bacterial colonization and infection rates, which can be treated only by novel therapeutic approaches other than the use of conventional antibiotics [18,19]. Chronic wound tissues can contain microbiomes of complex communities with coexisting fungal and bacterial colonies of different strains within biofilms [20]. According to this inter-kingdom model, fungi like Candida albicans can offer structures for other bacteria (S. aureus, P. aeruginosa, Streptococcus spp., E. faecalis, E. coli, and Acinetobacter baumannii etc.) to attach, form intricate biofilms, and increase the resistance against any ...
Antimicrobial agents containing symmetrical triiodides complexes with halogen bonding may release free iodine molecules in a controlled manner. This happens due to interactions with the plasma membrane of microorganisms which lead to changes in the structure of the triiodide anion. To verify this hypothesis, the triiodide complex [Na(12-crown-4)2]I3 was prepared by an optimized one-pot synthesis and tested against 18 clinical isolates, 10 reference strains of pathogens and five antibiotics. The antimicrobial activities of this symmetrical triiodide complex were determined by zone of inhibition plate studies through disc- and agar-well-diffusion methods. The triiodide complex proved to be a broad spectrum microbicidal agent. The biological activities were related to the calculated partition coefficient (octanol/water). The microstructural analysis of SEM and EDS undermined the purity of the triiodide complex. The anionic structure consists of isolated, symmetrical triiodide anions [I-I-I]- with halogen bonding. Computational methods were used to calculate the energy required to release iodine from [I-I-I]- and [I-I···I]-. The halogen bonding in the triiodide ion reduces the antibacterial activities in comparison to the inhibitory actions of pure iodine but increases the long term stability of [Na(12-crown-4)2]I3.
Antimicrobial resistance (AMR) is a challenge for the survival of the human race. The steady rise of resistant microorganisms against the common antimicrobials results in increased morbidity and mortality rates. Iodine and a plethora of plant secondary metabolites inhibit microbial proliferation. Antiseptic iodophors and many phytochemicals are unaffected by AMR. Surgical site and wound infections can be prevented or treated by utilizing such compounds on sutures and bandages. Coating surgical face masks with these antimicrobials can reduce microbial infections and attenuate their burden on the environment by re-use. The facile combination of Aloe Vera Barbadensis Miller (AV), Trans-cinnamic acid (TCA) and Iodine (I2) encapsulated in a polyvinylpyrrolidone (PVP) matrix seems a promising alternative to common antimicrobials. The AV-PVP-TCA-I2 formulation was impregnated into sterile discs, medical gauze bandages, surgical sutures and face masks. Morphology, purity and composition were confirmed by several analytical methods. Antimicrobial activity of AV-PVP-TCA-I2 was investigated by disc diffusion methods against ten microbial strains in comparison to gentamycin and nystatin. AV-PVP-TCA-I2 showed excellent antifungal and strong to intermediate antibacterial activities against most of the selected pathogens, especially in bandages and face masks. The title compound has potential use for prevention or treatment of surgical site and wound infections. Coating disposable face masks with AV-PVP-TCA-I2 may be a sustainable solution for their re-use and waste management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.