We are using acute ozone as an elicitor of endogenous reactive oxygen species (ROS) to understand oxidative signalling in Arabidopsis . Temporal patterns of ROS following a 6 h exposure to 300 nL L -1 of ozone in ozone-sensitive Wassilewskija (Ws-0) ecotype showed a biphasic ROS burst with a smaller peak at 4 h and a larger peak at 16 h. This was accompanied by a nitric oxide (NO) burst that peaked at 9 h. An analysis of antioxidant levels showed that both ascorbate (AsA) and glutathione (GSH) were at their lowest levels, when ROS levels were high in ozone-stressed plants. Whole genome expression profiling analysis at 1, 4, 8, 12 and 24 h after initiation of ozone treatment identified 371 differentially expressed genes. Early induction of proteolysis and hormone-responsive genes indicated that an oxidative cell death pathway was triggered rapidly. Downregulation of genes involved in carbon utilization, energy pathways and signalling suggested an inefficient defense response. Comparisons with other large-scale expression profiling studies indicated some overlap between genes induced by ethylene and ozone, and a significant overlap between genes repressed by ozone and methyl jasmonate treatment. Further, analysis of cis elements in the promoters of ozone-responsive genes also supports the view that phytohormones play a significant role in ozone-induced cell death.
By screening a native plant extract library we identified Solidago nemoralis as a novel source of agonists for alpha7 nicotinic receptors for acetylcholine with therapeutic potential. The next phase of our drug discovery strategy is to increase the yields of active compounds in the plant species by gain of function mutations in hairy root cultures [1]. Here we report a protocol for Agrobacterium rhizogenes-mediated genetic transformation of hairy root cultures of Solidago nemoralis which will enable this. Leaf explants of this species were successfully transformed with a frequency of 30% -35% using A. rhizogenes strain R1000 harboring the binary vector pCambia 1301. Transformation was confirmed using the β-glucuronidase (GUS) histochemical assay. Transformed hairy roots showed spontaneous regeneration of adventitious shoots in media without the addition of cytokines, albeit at very low frequency. However, media supplementation with auxin (α-naphthaleneacetic acid, NAA) increased shoot regeneration frequency to 35% and resulted in viable adventitious shoots. Transformation was confirmed at all phases of plant regeneration by GUS staining. Hairy root transformation of Solidago altissima has been previously reported, but this is the first report of genetic transformation of S. nemoralis. The protocol will allow for a large population of activation tagged mutants of S. nemoralis to be generated which will be then screened for the presence of stable mutants which are over-producing metabolites with activity at alpha7 nicotinic receptors. These over-producing mutant cultures will then be regenerated into intact mutant plants.
Plants are a source of complex bioactive compounds, with value as pharmaceuticals, or leads for synthetic modification. Many of these secondary metabolites have evolved as defenses against competing organisms. and their pharmaceutical value is “accidental”, resulting from homology between target proteins in these competitors, and human molecular therapeutic targets. Here we show that it is possible to use mutation and selection of plant cells to re-direct their “evolution” toward metabolites that interact with the therapeutic target proteins themselves. This is achieved by expressing the human target protein in plant cells, and selecting mutants for survival based on the interaction of their metabolome with this target. This report describes the successful evolution of hairy root cultures of a Lobelia species toward increased biosynthesis of metabolites that inhibit the human dopamine transporter protein. Many of the resulting selected mutants are overproducing the active metabolite found in the wild-type plant, but others overproduce active metabolites that are not readily detectable in non-mutants. This technology can access the whole genomic capability of a plant species to biosynthesize metabolites with a specific target. It has potential value as a novel platform for plant drug discovery and production, or as a means of optimizing the therapeutic value of medicinal plant extracts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.