The extent to which subjective awareness influences reward processing, and thereby affects future decisions, is currently largely unknown. In the present report, we investigated this question in a reinforcement learning framework, combining perceptual masking, computational modeling, and electroencephalographic recordings (human male and female participants). Our results indicate that degrading the visibility of the reward decreased, without completely obliterating, the ability of participants to learn from outcomes, but concurrently increased their tendency to repeat previous choices. We dissociated electrophysiological signatures evoked by the rewardbased learning processes from those elicited by the reward-independent repetition of previous choices and showed that these neural activities were significantly modulated by reward visibility. Overall, this report sheds new light on the neural computations underlying reward-based learning and decision-making and highlights that awareness is beneficial for the trial-by-trial adjustment of decisionmaking strategies.
Linguistic labels are known to facilitate object recognition, yet the mechanism of this facilitation is not well understood. Previous psychophysical studies have suggested that words guide visual perception by activating information about visual object shape. Here we aimed to test this hypothesis at the neural level, and to tease apart the visual and semantic contribution of words to visual object recognition. We created a set of object pictures from two semantic categories with varying shapes, and obtained subjective ratings of their shape and category similarity. We then conducted a word-picture matching experiment, while recording participants' EEG, and tested if the shape or the category similarity between the word's referent and target picture explained the spatiotemporal pattern of the picture-evoked responses. The results show that hearing a word activates representations of its referent's shape, which interacts with the visual processing of a subsequent picture within 100 ms from its onset. Furthermore, non-visual categorical information, carried by the word, affects the visual processing at later stages. These findings advance our understanding of the interaction between language and visual perception and provide insights into how the meanings of words are represented in the brain.
The extent to which subjective awareness influences reward processing, and thereby affects future decisions is currently largely unknown. In the present report, we investigated this question in a reinforcement-learning framework, combining perceptual masking, computational modeling and electroencephalographic recordings (human male and female participants). Our results indicate that degrading the visibility of the reward decreased -without completely obliterating-the ability of participants to learn from outcomes, but concurrently increased their tendency to repeat previous choices. We dissociated electrophysiological signatures evoked by the reward-based learning processes from those elicited by the reward-independent repetition of previous choices and showed that these neural activities were significantly modulated by reward visibility. Overall, this report sheds new light on the neural computations underlying reward-based learning and decision-making and highlights that awareness is beneficial for the trial-by-trial adjustment of decision-making strategies. Significance statementThe notion of reward is strongly associated with subjective evaluation, related to conscious processes such as "pleasure", "liking" and "wanting". Here we show that degrading reward visibility in a reinforcement learning task decreases -without completely obliterating-the ability of participants to learn from outcomes, but concurrently increases subjects tendency to repeat previous choices. Electrophysiological recordings, in combination with computational modelling, show that neural activities were significantly modulated by reward visibility. Overall, we dissociate different neural computations underlying reward-based learning and decision-making, which highlights a beneficial role of reward awareness in adjusting decision-making strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.