Insulin secretion and islet glucose metabolism were compared in pancreatic islets isolated from GK/Wistar (GK) rats with spontaneous Type 2 (non-insulin-dependent) diabetes mellitus and control Wistar rats. Islet insulin content was 24.5 +/- 3.1 microU/ng islet DNA in GK rats and 28.8 +/- 2.5 microU/ng islet DNA in control rats, with a mean (+/- SEM) islet DNA content of 17.3 +/- 1.7 and 26.5 +/- 3.4 ng (p < 0.05), respectively. Basal insulin secretion at 3.3 mmol/l glucose was 0.19 +/- 0.03 microU.ng islet DNA-1.h-1 in GK rat islets and 0.04 +/- 0.07 in control islets. Glucose (16.7 mmol/l) stimulated insulin release in GK rat islets only two-fold while in control islets five-fold. Glucose utilization at 16.7 mmol/l glucose, as measured by the formation of 3H2O from [5-3H]glucose, was 2.4 times higher in GK rat islets (3.1 +/- 0.7 pmol.ng islet DNA-1.h-1) than in control islets (1.3 +/- 0.1 pmol.ng islet DNA-1.h-1; p < 0.05). In contrast, glucose oxidation, estimated as the production of 14CO2 from [U-14C]glucose, was similar in both types of islets and corresponded to 15 +/- 2 and 30 +/- 3% (p < 0.001) of total glucose phosphorylated in GK and control islets, respectively. Glucose cycling, i.e. the rate of dephosphorylation of the total amount of glucose phosphorylated, (determined as production of labelled glucose from islets incubated with 3H2O) was 16.4 +/- 3.4% in GK rat and 6.4 +/- 1.0% in control islets, respectively (p < 0.01). We conclude that insulin secretion stimulated by glucose is markedly impaired in GK rat islets.(ABSTRACT TRUNCATED AT 250 WORDS)
In pancreatic islet extracts of rats with hereditary non-insulin-dependent diabetes mellitus (GK rats), the activity of the mitochondrial FAD-linked glycerophosphate dehydrogenase, as measured by either a radioisotopic or colorimetric procedure, only represented 30 to 40% of that found in control rats. This decrease in enzymic activity was not attributable to any sizeable change in either islet DNA content or the relative contribution of insulin-producing beta cells to total islet mass. It contrasted with a normal activity of other mitochondrial dehydrogenases and hexokinase isoenzymes. It coincided, however, with an increased activity of glutamate-pyruvate transaminase, as already observed in adult rats injected with streptozotocin during the neonatal period. The decreased activity of islet FAD-linked glycerophosphate dehydrogenase also contrasted with an increased activity of the same enzyme in the liver of GK, as compared to control rats. In the light of these findings and recent metabolic data collected in intact islets of GK rats, it is proposed that a deficiency of beta-cell FAD-linked glycerophosphate dehydrogenase, the key enzyme of the glycerol phosphate shuttle, may represent a cause of inherited non-insulin-dependent diabetes.
Cigarette smoke (CS) is a well-established risk factor in the development of chronic obstructive pulmonary disease (COPD). In contrast, the extent to which CS exposure contributes to the development of the systemic manifestations of COPD, such as skeletal muscle dysfunction and wasting, remains largely unknown. Decreased skeletal muscle capillarization has been previously reported in early stages of COPD and might play an important role in the development of COPD-associated skeletal muscle abnormalities. To investigate the effects of chronic CS exposure on skeletal muscle capillarization and exercise tolerance, a mouse model of CS exposure was used. The 129/SvJ mice were exposed to CS for 6 mo, and the expression of putative elements of the hypoxia-angiogenic signaling cascade as well as muscle capillarization were studied. Additionally, functional tests assessing exercise tolerance/endurance were performed in mice. Compared with controls, skeletal muscles from CS-exposed mice exhibited significantly enhanced expression of von Hippel-Lindau tumor suppressor (VHL), ubiquitin-conjugating enzyme E2D1 (UBE2D1), and prolyl hydroxylase-2 (PHD2). In contrast, hypoxia-inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF) expression was reduced. Furthermore, reduced muscle fiber cross-sectional area, decreased skeletal muscle capillarization, and reduced exercise tolerance were also observed in CS-exposed animals. Taken together, the current results provide evidence linking chronic CS exposure and induction of VHL expression in skeletal muscles leading toward impaired hypoxia-angiogenesis signal transduction, reduced muscle fiber cross-sectional area, and decreased exercise tolerance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.