Hepatocellular carcinoma (HCC) is the third most common cause of cancer-related mortality worldwide. We previously showed that a tumor/cancer stem cell (CSC) marker, doublecortin-like kinase (DCLK1) positively regulates hepatitis C virus (HCV) replication, and promotes tumor growth in colon and pancreas. Here, we employed transcriptome analysis, RNA interference, tumor xenografts, patient's liver tissues and hepatospheroids to investigate DCLK1-regulated inflammation and tumorigenesis in the liver. Our studies unveiled novel DCLK1-controlled feed-forward signaling cascades involving calprotectin subunit S100A9 and NFκB activation as a driver of inflammation. Validation of transcriptome data suggests that DCLK1 co-expression with HCV induces BRM/SMARCA2 of SW1/SNF1 chromatin remodeling complexes. Frequently observed lymphoid aggregates including hepatic epithelial and stromal cells of internodular septa extensively express DCLK1 and S100A9. The DCLK1 overexpression also correlates with increased levels of S100A9, c-Myc, and BRM levels in HCV/HBV-positive patients with cirrhosis and HCC. DCLK1 silencing inhibits S100A9 expression and hepatoma cell migration. Normal human hepatocytes (NHH)-derived spheroids exhibit CSC properties. These results provide new insights into the molecular mechanism of the hepatitis B/C-virus induced liver inflammation and tumorigenesis via DCLK1-controlled networks. Thus, DCLK1 appears to be a novel therapeutic target for the treatment of inflammatory diseases and HCC.
With the goal of identifying diagnostic and prognostic biomarkers in endometrial cancer, miRNA-profiling was carried out with formalin-fixed paraffin embedded (FFPE) tissue samples from 49 endometrial cancer patients. Results using an 84-cancer specific miRNA panel identified the upregulation of miR-141-3p and miR-96-5p along with a downregulation of miR-26, miR-126-3p, miR-23b, miR-195-5p, miR-374a and let-7 family of miRNAs in endometrial cancer. We validated the dysregulated expression of the identified miRNAs in a panel of endometrial cancer cell-lines. Immunohistochemical analysis of the tissue micro array derived from these patients established the functional correlation between the decreased expression of tumor suppressive miRNAs and their target oncogenes: ERBB2, EGFR, EPHA2, BAX, GNA12, GNA13, and JUN. Comparative analysis of the samples from the patients with extended progression-free survival (PFS) ( > 21 months) versus the patients with the PFS of < 21 months indicated increased expression of tumor suppressive miR-142-3p, miR-142-5p, and miR-15a-5p in samples from extended PFS patients. In addition to defining a specific set of miRNAs and their target genes as potential diagnostic biomarkers, our studies have identified tumor suppressive miR-142 cluster and miR-15a as predictors of favorable prognosis for therapy response in endometrial cancer.
Zika virus (ZIKV) infection in pregnant women is a serious threat to the development and viability of the fetus. The primary mode of ZIKV transmission to humans is through mosquito bites, but sexual transmission has also been well documented in humans. However, little is known of the short- and long-term effects of ZIKV infection on the human male reproductive system. This study examines the effects of ZIKV infection on the male reproductive organs and semen and the immune response of the olive baboon (Papio anubis). Nine mature male baboons were infected with ZIKV (French Polynesian strain) subcutaneously. Six animals were euthanized at 41 days, while three animals were euthanized at 10 or 11 days postinfection (dpi). Viremia and clinical evidence of infection were present in all nine baboons. ZIKV RNA was present in the semen of five of nine baboons. ZIKV was present in the testes of two of three males euthanized at 10 or 11 dpi, but in none of six males at 41 dpi. Immunofluorescence of testes suggested the presence of ZIKV in sperm progenitor cells, macrophage penetration of seminiferous tubules, and increased tumor necrosis factor alpha (TNF-α), particularly in vascular walls. These data demonstrate that male olive baboons approximate the male human ZIKV response, including viremia, the adaptive immune response, and persistent ZIKV in semen. Although gross testicular pathology was not seen, the demonstrated breach of the testes-blood barrier and targeting of spermatogenic precursors suggest possible long-term implications in ZIKV-infected primates. IMPORTANCE Zika virus (ZIKV) is an emerging flavivirus spread through mosquitoes and sexual contact. ZIKV infection during pregnancy can lead to severe fetal outcomes, including miscarriage, fetal death, preterm birth, intrauterine growth restriction, and fetal microcephaly, collectively known as congenital Zika syndrome. Therefore, it is important to understand how this virus spreads, as well as the resulting pathogenesis in translational animal models that faithfully mimic ZIKV infection in humans. Such models will contribute to the future development of efficient therapeutics and prevention mechanisms. Through our previous work in olive baboons, we developed a nonhuman primate model that is permissive to ZIKV infection and transfers the virus vertically from mother to fetus, modeling human observations. The present study contributes to understanding of ZIKV infection in male baboon reproductive tissues and begins to elucidate how this may affect fertility, reproductive capacity, and sexual transmission of the virus.
High mortality rates in ovarian cancer are due to late-stage diagnosis when extensive metastases are present, coupled with the eventual development of resistance to standard chemotherapy. There is, thus, an urgent need to identify targetable pathways to curtail this deadly disease. In this study, we show that the apelin receptor, APJ, is a viable target that promotes tumor progression of high-grade serous ovarian cancer (HGSOC). APJ is specifically overexpressed in tumor tissue, and is elevated in metastatic tissues compared with primary tumors. Importantly, increased APJ expression significantly correlates with decreased median overall survival (OS) by 14.7 months in patients with HGSOC. Using various ovarian cancer model systems, we demonstrate that APJ expression in cancer cells is both necessary and sufficient to increase prometastatic phenotypes in vitro, including proliferation, cell adhesion to various molecules of the extracellular matrix (ECM), anoikis resistance, migration, and invasion; and these phenotypes are efficiently inhibited by the APJ inhibitor, ML221. Overexpression of APJ also increases metastasis of ovarian cancer cells in vivo. Mechanistically, the prometastatic STAT3 pathway is activated downstream of APJ, and in addition to the ERK and AKT pathways, contributes to its aggressive phenotypes. Our findings suggest that the APJ pathway is a novel and viable target, with potential to curb ovarian cancer progression and metastasis. Implications: The APJ pathway is a viable target in HGSOC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.