Polymers that start degrading under acidic conditions are increasingly investigated as a pathway to trigger the release of drugs once the drug carrier reached the slightly acidic tumour environment or after the drug carrier has been taken up by cells, resulting in the localization of the polymer in the acidic endosomes and lysosomes. The advances in the design of acid-degradable polymers and drug delivery systems have been summarized and discussed in this review article. Various acid-labile groups such as acetals, orthoester, hydrazones, imines and cis-aconityl, that can undergo cleavage in slightly acidic conditions, have been employed to create polymer architectures or polymer-drug conjugates that can degrade under lysosomal and endosomal conditions, triggering the fast release of drugs or DNA.
A novel step growth polymerization A-B strategy based on the click chemistry polyaddition of tailor-made alpha-azide-omega-alkyne low molar mass monomers was developed, leading to polytriazole (co)polymers with tunable structures and properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.