We have shown that viruses are associated with 80 to 85% of asthma exacerbations in school-age children in the community. We hypothesize that viral infections are also associated with severe attacks of asthma precipitating hospital admissions. To investigate this, we conducted a time-trend analysis, comparing the seasonal patterns of respiratory infections and hospital admissions for asthma in adults and children. During a 1-yr study in the Southampton area of the United Kingdom, 108 school-age children monitored upper and lower respiratory symptoms and took peak expiratory flow rate (PEFR) recordings. From children reporting a symptomatic episode or a decrease in PEFR, samples were taken for detection of viruses and atypical bacteria. A total of 232 respiratory viruses and four atypical bacteria were detected. The half-monthly rates of upper respiratory infection were compared with the half-monthly rates for hospital admissions for asthma (International Classification of Diseases [ICD] code 493) for the same time period for the hospitals serving the areas from which the cohort of schoolchildren was drawn. The relationships of upper respiratory infections and hospital admissions for asthma with school attendance were studied. Strong correlations were found between the seasonal patterns of upper respiratory infections and hospital admissions for asthma (r = 0.72; p < 0.0001). This relationship was stronger for pediatric (r = 0.68; p < 0.0001) than for adult admissions (r = 0.53; p < 0.01). Upper respiratory infections and admissions for asthma were more frequent during periods of school attendance (87% of pediatric and 84% of total admissions), than during school holiday periods (p < 0.001). These relationships remained significant when allowance was made for linear trend and seasonal variation using multiple regression analysis (p < 0.01). Not surprisingly, school attendance, because it is a major factor in respiratory virus transmission, was found to be a major confounding variable in children. This study demonstrates that upper respiratory viral infections are strongly associated in time with hospital admissions for asthma in children and adults. Rhinoviruses were the major pathogen implicated, and the majority of viral infections and asthma admissions occurred during school attendance.
High exposure to NO2 in the week before the start of a respiratory viral infection, and at levels within current air quality standards, is associated with an increase in the severity of a resulting asthma exacerbation.
Rhinoviruses and enteroviruses are the major members of the picornavirus genus that cause human disease. We compared the polymerase chain reaction and viral culture for the identification of picornaviruses in nasal aspirates from children during episodes of respiratory symptoms and when asymptomatic and from asymptomatic adults. One hundred eight children, aged 9 to 11 years, completed a year-long study. Within 24 to 48 h of a report of respiratory symptoms, a nasal aspirate was taken in the home. Nasal aspirates were also taken from 65 of the children and from 33 normal adults when they had been free of respiratory symptoms for at least 2 weeks. Picornaviruses were isolated by culture for three passages in Ohio HeLa cells in rolling tubes at 33°C and pH 7.0. For the polymerase chain reaction, duplicate 50-pl samples were amplified with conserved primers from the 5' noncoding region. Picornaviruses generated-380-bp bands in agarose gel electrophoresis; the specificity of these bands was confirmed by filter hybridization with a conserved internal probe. Picornaviruses were isolated by culture in 47 (46 rhinoviruses) of 292 symptomatic episodes (16%), whereas the polymerase chain reaction identified picornavirus genomic material in 146 episodes (50%v), including all but one of the culture-positive episodes. As for asymptomatic samples, eight (12%) children and two (4%) adults were positive by the polymerase chain reaction, whereas only one child's specimen was positive by culture. This polymerase chain reaction assay represents a clear advance in the identification of picornavirus infection, with a detection rate threefold greater than the virus culture method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.