Muscle contraction acutely increases glucose transport in both healthy and type 2 diabetic individuals. Since glucose uptake during muscle contraction has been observed in the absence of insulin, the existence of an insulin-independent pathway has been suggested to explain this phenomenon. However, the exact mechanism behind the translocation of GLUT4 vesicles through the sarcolemma during muscle contraction is still unknown. Some substances, such as AMPK and calcium activated proteins, have been suggested as potential mediators but the exact mechanisms of their involvement remain to be elucidated. A hypothetical convergence point between the insulin cascade and the potential pathways triggered by muscle contraction has been suggested. Therefore, the earliest concept that two different routes exist in skeletal muscle has been progressively modified to the notion that glucose uptake is induced by muscle contraction via components of the insulin pathway. With further consideration, increased glucose uptake and enhanced insulin sensitivity observed during/after exercise might be explained by a metabolic- and calcium-dependent activation of several intermediate molecules of the insulin cascade. This paper aimed to review the literature in order to examine in detail these concepts behind muscle contraction-induced glucose uptake.
Background. End-stage renal disease (ESRD) patients under hemodialysis (HD) have high mortality rate. Inflammation, dyslipidemia, disturbances in erythropoiesis, iron metabolism, endothelial function, and nutritional status have been reported in these patients. Our aim was to identify any significant association of death with these disturbances, by performing a two-year follow-up study. Methods and Results. A large set of data was obtained from 189 HD patients (55.0% male; 66.4 ± 13.9 years old), including hematological data, lipid profile, iron metabolism, nutritional, inflammatory, and endothelial (dys)function markers, and dialysis adequacy. Results. 35 patients (18.5%) died along the follow-up period. Our data showed that the type of vascular access, C-reactive protein (CRP), and triglycerides (TG) are significant predictors of death. The risk of death was higher in patients using central venous catheter (CVC) (Hazard ratio [HR] =3.03, 95% CI = 1.49–6.13), with higher CRP levels (fourth quartile), compared with those with lower levels (first quartile) (HR = 17.3, 95% CI = 2.40–124.9). Patients with higher TG levels (fourth quartile) presented a lower risk of death, compared with those with the lower TG levels (first quartile) (HR = 0.18, 95% CI = 0.05–0.58). Conclusions. The use of CVC, high CRP, and low TG values seem to be independent risk factors for mortality in HD patients.
Anemia is a common complication of chronic kidney disease (CKD) that develops early and its severity increases as renal function declines. It is mainly due to a reduced production of erythropoietin (EPO) by the kidneys; however, there are evidences that iron metabolism disturbances increase as CKD progresses. Our aim was to study the mechanisms underlying the development of anemia of CKD, as well as renal damage, in the remnant kidney rat model of CKD induced by 5/6 nephrectomy. This model of CKD presented a sustained degree of renal dysfunction, with mild and advanced glomerular and tubulointerstitial lesions. Anemia developed 3 weeks after nephrectomy and persisted throughout the protocol. The remnant kidney was still able to produce EPO and the liver showed an increased EPO gene expression. In spite of the increased EPO blood levels, anemia persisted and was linked to low serum iron and transferrin levels, while serum interleukin (IL)-6 and high sensitivity C-reactive protein (hs-CRP) levels showed the absence of systemic inflammation. The increased expression of duodenal ferroportin favours iron absorption; however, serum iron is reduced which might be due to iron leakage through advanced kidney lesions, as showed by tubular iron accumulation. Our data suggest that the persistence of anemia may result from disturbances in iron metabolism and by an altered activity/function of EPO as a result of kidney cell damage and a local inflammatory milieu, as showed by the increased gene expression of different inflammatory proteins in the remnant kidney. In addition, this anemia and the associated kidney hypoxia favour the development of fibrosis, angiogenesis and inflammation that may underlie a resistance to EPO stimuli and reduced iron availability. These findings might contribute to open new windows to identify putative therapeutic targets for this condition, as well as for recombinant human EPO (rHuEPO) resistance, which occurs in a considerable percentage of CKD patients.
The Val122Ile mutant transthyretin (TTR Ile122) is an amyloidogenic protein which has been described as the major protein component of amyloid fibrils isolated from patients with familial amyloidotic cardiomyopathy (FAC), a disease characterized by cardiac failure and amyloid deposits in the heart. The reasons for the deposition of TTR are still unknown and it is conceivable that a conformational alteration, resulting from the mutation, is fundamental for amyloid formation. The three-dimensional structure of TTR Ile122 was determined and refined to a crystallographic R factor of 15.8% at 1.9 A resolution. The r.m.s. deviation from ideality in bond distances is 0.019 A and in angle-bonded distances is 0.027 A. The presence of two crystallographically independent monomers in the asymmetric unit allowed additional means of estimation of atomic coordinate error. The structure of the mutant is essentially identical to that of the wild-type transthyretin (TTR). The largest deviations occur in surface loops and in the region of the substitution. The protein is a tetramer composed of identical subunits; each monomer has two four-stranded beta-sheets which are extended to eight-stranded beta-sheets when two monomers associate through hydrogen bonds forming a dimer, which is the crystallographic asymmetric unit. The replacement of valine for isoleucine introduces very small alterations in relation to the wild-type protein; nevertheless they seem to confirm a tendency for a less stable tetrameric structure. This would support the idea that the tetrameric structure might be disrupted in amyloid fibrils.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.