Gamma rays as a type of ionizing radiation constitute a physical mutagen that induces mutations and could be effectively used in plant breeding. To compare the effects of gamma and ionizing irradiation according to exposure time in common wheat (Keumgang, IT 213100), seeds were exposed to 60Co gamma rays at different dose rates. To evaluate the amount of free radical content, we used electron spin resonance spectroscopy. Significantly more free radicals were generated in the case of long-term compared with short-term gamma-ray exposure at the same dose of radiation. Under short-term exposure, shoot and root lengths were slightly reduced compared with those of the controls, whereas long-term exposure caused severe growth inhibition. The expression of antioxidant-related and DNA-repair-related genes was significantly decreased under long-term gamma-ray exposure. Long-term exposure caused higher radiosensitivity than short-term exposure. The results of this study could help plant breeders select an effective mutagenic induction dose rate in wheat.
In this study, we performed a genotyping-by-sequencing analysis and a genome-wide association study of a soybean mutant diversity pool previously constructed by gamma irradiation. A GWAS was conducted to detect significant associations between 37,249 SNPs, 11 agronomic traits, and 6 phytochemical traits. In the merged data set, 66 SNPs on 13 chromosomes were highly associated (FDR p < 0.05) with the following 4 agronomic traits: days of flowering (33 SNPs), flower color (16 SNPs), node number (6 SNPs), and seed coat color (11 SNPs). These results are consistent with the findings of earlier studies on other genetic features (e.g., natural accessions and recombinant inbred lines). Therefore, our observations suggest that the genomic changes in the mutants generated by gamma irradiation occurred at the same loci as the mutations in the natural soybean population. These findings are indicative of the existence of mutation hotspots, or the acceleration of genome evolution in response to high doses of radiation. Moreover, this study demonstrated that the integration of GBS and GWAS to investigate a mutant population derived from gamma irradiation is suitable for dissecting the molecular basis of complex traits in soybeans.
The biochemical compounds in kenaf leaves and flowers mainly consist of flavonoids, including flavonoid glycosides and floral anthocyanins. In the present study, we performed comparative transcriptome analysis using RNA-sequencing and identified putative genes involved in flower coloration in different flower developmental stages of three kenaf mutants including Baekma (white flower), Jangdae (ivory flower), and Bora (purple flower). A total of 36.1 Gb reads were generated for two kenaf accessions and 38,601 representative transcripts with an average length of 1350 bp were yielded, of which 33,057 (85.64%) were annotated against two databases. Expression profiling of the transcripts identified 1044 and 472 differentially expressed genes (DEGs) among three mutants in the young bud and full bloom stages, respectively. KEGG enrichment analysis of these DEGs revealed that the representative pathway was “biosynthesis of secondary metabolites”, including phenylpropanoid biosynthesis and flavonoid biosynthesis. Consequently, we investigated genes related to the phenylpropanoid pathway, which included 45 DEGs from a total of 1358. Our results provide useful information for understanding gene functions of flower coloration in kenaf, which will be useful in further studies.
Sorghum (Sorghum bicolor L.) is a promising biomass crop with high yields of cellulose, hemicellulose, and lignin. Sorghum biomass has emerged as an eco-friendly industrial material useful for producing biofuels and bioplastics. This study conducted genotyping-by-sequencing (GBS)-based genome-wide association studies (GWAS) to establish the genetic basis of traits associated with biomass. Specifically, the researchers evaluated agronomic traits and phenolic compounds using 96 sorghum genotypes. Six phenolic compounds, luteolinidin diglucoside, luteolin glucoside, apigeninidin glucoside, luteolinidin, apigeninidin, and 5-O-Me luteolinidin, were found to be the major phenolic compounds in all genotypes. Out of our six detected phenolic compounds (luteolinidin diglucoside, luteolin glucoside, apigeninidin glucoside, luteolinidin, apigeninidin, and 5-O-Me luteolinidin), luteolinidin was the major phenolic compound in all genotypes. Next, a GWAS analysis was performed to confirm significant associations between 192,040 filtered single-nucleotide polymorphisms (SNPs) and biomass-related traits. The study identified 40 SNPs on 10 chromosomes that were significantly associated with heading date (4 SNPs), plant height (3 SNPs), dry yield (2 SNPs), and phenolic compounds (31 SNPs). The GWAS analysis showed that SbRio.10G099600 (FUT1) was associated with heading date, SbRio.09G149200 with plant height, SbRio.06G211400 (MAFB) with dry yield, SbRio.04G259800 (PDHA1) with total phenolic content and luteolinidin diglucoside, and SbRio.02G343600 (LeETR4) with total phenolic content and luteolinidin, suggesting that these genes could play key roles in sorghum. These findings demonstrate the potential value of sorghum as a biomass resource and the potential for selecting sorghum genotypes with reduced phenolic contents for use in the bioindustry.
Rapeseed (Brassica napus L.) is one of the most oil crop, and its commercial value is contingent upon its agronomic characteristics and oil quality. In this study, 73,226 single nucleotide polymorphisms (SNPs) across 95 rapeseed mutant lines derived from gamma rays and their original cultivar (‘Tamra’) obtained from genotyping-by-sequencing (GBS) was investigated gene ontology (GO) analysis and genome-wide association study (GWAS). GWAS was conducted on agronomic (plant height, ear length, thousand seed weight and seed yield) and oil (fatty acid and crude fat) traits. GO analysis showed that many genes displaying SNPs were involved in cellular processes, intracellular anatomical structures and organic cyclic compound binding. A total of 149 significant SNPs were associated with the agronomic traits (76 SNPs) and oil traits (73 SNPs). Bna.A05p02350D (SFGH) and Bna.C02p22490D (MDN1) were selected as novel candid genes for thousand seed weight. In addition, Bna.C03p14350D (EXO70) and Bna.A09p05630D (PI4Kα1) were selected as novel candidate genes for the erucic acid and crude fat content, respectively. These findings could facilitate the identification of optimal genotypes for breeding new cultivars, and association studies represent an economically efficient tool for mutant screening and the selection of elite rapeseed-breeding lines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.