While the human insula is known to be involved in auditory processing, knowledge about its precise functional role and the underlying electrophysiology is limited. To assess its role in automatic auditory deviance detection we analyzed the high frequency EEG activity (75-145 Hz) from 90 intracranial insular electrodes across 16 patients who were candidates for resective epilepsy surgery while they passively listened to a stream of standard and deviant tones. Deviant and standard tones differed in four physical dimensions: intensity, frequency, location and time. Auditory responses were found in the short and long gyri, and the anterior, superior, and inferior segments of the circular sulcus of the insular cortex, but only a subset of electrodes in the inferior segment showed deviance detection responses, i.e. a greater and later response to deviants relative to standards. Altogether, our results indicate that the human insula is engaged during auditory deviance detection.
Objective. Electrical stimulation mapping (ESM) of the brain using stereo-electroencephalography (SEEG) intracranial electrodes, also known as depth-ESM (DESM), is being used as part of the pre-surgical planning for brain surgery in drug-resistant epilepsy patients. Typically, DESM consists in applying the electrical stimulation using adjacent contacts of the SEEG electrodes and in recording the EEG responses to those stimuli, giving valuable information of critical brain regions to better delimit the region to resect. However, the spatial extension or coverage of the stimulated area is not well defined even though the precise electrode locations can be determined from computed tomography images. Approach. We first conduct electrical simulations of DESM for different shapes of commercial SEEG electrodes showing the stimulation extensions for different intensities of injected current. We then evaluate the performance of DESM in terms of spatial coverage and focality on two realistic head models of real patients undergoing pre-surgical evaluation. We propose a novel strategy for DESM that consist in applying the current using contacts of different SEEG electrodes (x-DESM), increasing the versatility of DESM without implanting more electrodes. We also present a clinical case where x-DESM replicated the full semiology of an epilepsy seizure using a very low-intensity current injection, when typical adjacent DESM only reproduced partial symptoms with much larger intensities. Finally, we show one example of DESM optimal stimulation to achieve maximum intensity, maximum focality or intermediate solution at a pre-defined target, and one example of temporal interference in DESM capable of increasing focality in brain regions not immediately touching the electrode contacts. Main results. It is possible to define novel current injection patterns using contacts of different electrodes (x-DESM) that might improve coverage and/or focality, depending on the characteristics of the candidate brain. If individual simulations are not possible, we provide the estimated radius of stimulation as a function of the injected current and SEEG electrode brand as a reference for the community. Significance. Our results show that subject-specific electrical stimulations are a valuable tool to use in the pre-surgical planning to visualize the extension of the stimulated regions. The methods we present here are also applicable to pre-surgical planning of tumor resections and deep brain stimulation treatments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.