Lipases are versatile biocatalysts that can perform innumerable different reactions. Their enantio-, chemo- and stereo-selective nature makes them an important tool in the area of organic synthesis. Unlike other hydrolases that work in aqueous phase, lipases are unique as they act at the oil/water interface. Besides being lipolytic, lipases also possess esterolytic activity and thus have a wide substrate range. Hence, the lipase assay protocols hold a significant position in the field of lipase research. Lipase activity can be estimated using a wide range of assay protocols that differ in terms of their basic principle, substrate selectivity, sensitivity and applicability. As the value of these enzymes continues to grow and new markets are exploited, development of new or improved enzymes will be a key element in the emerging realm of biotechnology. Hence, development of faster and simpler protocols incorporating newer and more specific substrates is the need of the hour. In this endeavour, methods that could be adopted for molecular screening occupy an important position. Here, an overview of the lipase assay protocols is presented with emphasis on the assays that can be adopted for the molecular screening of these biocatalysts.
In the present scenario, fats and oil modification is one of the prime areas in food processing industry that demands novel economic and green technologies. In this respect, tailored vegetable oils with nutritionally important structured triacylglycerols and altered physicochemical properties have a big potential in the future market. In this context, it is well established that lipases especially microbial lipases, which are regiospecific and fatty acid specific, are of immense importance and hence could be exploited for retailoring of vegetable oils. Further, of the bulk available, cheap oils could also be upgraded to synthesize nutritionally important structured triacylglycerols like cocoa butter substitutes, low calorie triacylglycerols, PUFA-enriched and oleic acid enriched oils. It is also possible to change the physical properties of natural oils to convert them into margarines and hard butter with higher melting points or into special low calorie spreads with short or medium chain fatty acids. Today, by and large, fat and oil modifications are carried out chemically following the method of directed inter-esterification. The process is energy intensive and non-specific. Lipase mediated modifications are likely to occupy a prominent place in oil industry for tailoring structured lipids since enzymatic modifications are specific and can be carried out at moderate reaction conditions. However, as a commercial venture, lipases are yet to be fully exploited. Once the technologies are established, the demand of lipases in oil industry is expected to increase tremendously in the near future for specific modifications of fats and oils to meet the changing consumers' dietary requirements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.