Exposure to persistent organochlorines in breast milk was estimated probabilistically for Canadian infants. Noncancer health effects were evaluated by comparing the predicted exposure distributions to published guidance values. For chemicals identified as potential human carcinogens, cancer risks were evaluated using standard methodology typically applied in Canada, as well as an alternative method developed under the Canadian Environmental Protection Act. Potential health risks associated with exposure to persistent organochlorines were quantitatively and qualitatively weighed against the benefits of breast-feeding. Current levels of the majority of contaminants identified in Canadian breast milk do not pose unacceptable risks to infants. Benefits of breast-feeding are well documented and qualitatively appear to outweigh potential health concerns associated with organochlorine exposure. Furthermore, the risks of mortality from not breast-feeding estimated by Rogan and colleagues exceed the theoretical cancer risks estimated for infant exposure to potential carcinogens in Canadian breast milk. Although levels of persistent compounds have been declining in Canadian breast milk, potentially significant risks were estimated for exposure to polychlorinated biphenyls, dibenzo-p-dioxins, and dibenzofurans. Follow-up work is suggested that would involve the use of a physiologically based toxicokinetic model with probabilistic inputs to predict dioxin exposure to the infant. A more detailed risk analysis could be carried out by coupling the exposure estimates with a dose-response analysis that accounts for uncertainty.
Summary:Regulatory agencies face daunting challenges identifying emerging chemical hazards because of the large number of chemicals in commerce and limited data on exposure and toxicology. Evaluating one chemical at a time is inefficient and can lead to replacement with uncharacterized chemicals or chemicals with structural features already linked to toxicity. The Office of Environmental Health Hazard Assessment (OEHHA) has developed a process for constructing and assessing chemical groups for potential biomonitoring in California. We screen for chemicals with significant exposure potential and propose possible chemical groups, based on structure and function. To support formal consideration of these groups by Biomonitoring California’s Scientific Guidance Panel, we conduct a detailed review of exposure and toxicity data and examine the likelihood of detection in biological samples. To date, 12 chemical groups have been constructed and added to the pool of chemicals that can be selected for Biomonitoring California studies, including p,p´-bisphenols, brominated and chlorinated organic compounds used as flame retardants, non-halogenated aromatic phosphates, and synthetic polycyclic musks. Evaluating chemical groups, rather than individual chemicals, is an efficient way to respond to shifts in chemical use and the emergence of new chemicals. This strategy can enable earlier identification of important chemicals for monitoring and intervention.
The statutory language of the Safe Drinking Water and Toxic Enforcement Act of 1986 (Proposition 65; California Health and Safety Code 25249.5 et seq.) encourages rapid adoption of "no significant risk levels" (NSRLs), intakes associated with estimated cancer risks of no more than 1 in 100,000. Derivation of an NSRL for a carcinogen listed under Proposition 65 requires the development of a cancer potency value. This paper discusses the methodology for the derivation of cancer potencies using an expedited procedure, and provides potency estimates for a number of agents listed as carcinogens under Proposition 65. To derive expedited potency values, default risk assessment methods are applied to data sets selected from an extensive tabulation of animal cancer bioassays according to criteria used by regulatory agencies. A subset of these expedited values is compared to values previously developed by regulatory agencies using conventional quantitative risk assessment and found to be in good agreement. Specific regulatory activities which could be facilitated by adopting similar expedited procedures are identified.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.