The control of cell fate is an epigenetic process initiated by transcription factors (TFs) that recognize DNA motifs and recruit activator complexes and transcriptional machineries to chromatin. Lineage specificity is thought to be provided solely by TF-motif pairing, while the recruited activators are passive. Here, we show that INTS13, a subunit of the Integrator complex, operates as monocytic/macrophagic differentiation factor. Integrator is a general activator of transcription at coding genes and is required for eRNA maturation. Here, we show that INTS13 functions as an independent sub-module and targets enhancers through Early Growth Response (EGR1/2) TFs and their co-factor NAB2. INTS13 binds poised monocytic enhancers eliciting chromatin looping and activation. Independent depletion of INTS13, EGR1, or NAB2 impairs monocytic differentiation of cell lines and primary human progenitors. Our data demonstrate that Integrator is not functionally homogeneous and has TF-specific regulatory potential, revealing a new enhancer regulatory axis that controls myeloid differentiation.
Summary
AT-rich interactive domain-containing protein 1A and 1B (ARID1A, ARID1B) are mutually exclusive subunits of the chromatin remodeler SWI/SNF. ARID1A is the most frequently mutated chromatin regulator across all cancers, and ovarian clear cell carcinoma (OCCC) carries the highest prevalence of ARID1A mutations (~57%). Despite evidence implicating ARID1A in tumorigenesis, the mechanism remains elusive. Here, we demonstrate that in OCCC ARID1A binds active regulatory elements. Depletion of ARID1A represses RNA Polymerase II (RNAPII) transcription, but results in modest changes to accessibility. Specifically, pausing of RNAPII is severely impaired after loss of ARID1A. Compromised pausing results in transcriptional dysregulation of active genes, which is compensated by upregulation of ARID1B. However, a subset of ARID1A-dependent genes is not rescued by ARID1B, including many p53 and estrogen receptor (ESR1) targets. Our results provide new insight on ARID1A-mediated tumorigenesis and unveil new functions of SWI/SNF in modulating RNAPII dynamics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.