Abstract. Laboratory experiments were conducted in an open channel flume with a flat sandy bed to examine the role of turbulence on sediment resuspension. An acoustic Doppler velocimeter (ADV) was used to measure the instantaneous three-dimensional velocity components and acoustic backscatter as a proxy to suspended sediment concentration. Estimates of sediment transport assume that there is a mean critical velocity that needs to be exceeded before sediment transport is initiated. This approach does not consider the turbulent flow field that may initiate sediment resuspension through event-based processes such as the "bursting" phenomenon. In this paper, laboratory measurements were used to examine the sediment resuspension processes below and above the mean critical velocity. The results within a range above and below the measured mean critical velocity suggested that (1) the contribution of turbulent bursting events remained identical in both experimental conditions, (2) ejection and sweep events contributed more to the total sediment flux than up-acceleration and down-deceleration events, and (3) wavelet transform revealed a correlation between the momentum and sediment flux in both test conditions. Such similarities in conditions above and below the measured mean critical velocity highlight the need to re-evaluate the accuracy of a single time-averaged mean critical velocity for the initiation of sediment entrainment.
Sediment transport equations often consider a mean velocity threshold for the initiation of sediment motion and resuspension, ignoring event-based turbulent bursting processes. However, laboratory experiments have suggested that near-bed sediment resuspension is influenced by intermittent turbulent coherent structures. In the field, accessibility constraints for deployment of easily operated equipment has largely prevented further identification and understanding of such processes, which may contribute to resuspension in the marine environment. Field experiments were conducted on the Northwest Slope, Australia, under conditions where the mean current velocities were below the estimated and measured time-averaged critical velocity to investigate the relationship between near-bed turbulent coherent structures and sediment resuspension. Results indicate that sediment resuspension occur even when velocities are below the estimated and measured mean critical values. The majority of turbulent sediment flux is due to ejection and sweep events, with lesser contributions from up-acceleration and down-deceleration (vertical flow) events. Spectral and quadrant analysis indicated the anisotropic and intermittent nature of Reynolds stresses, and wavelet transform revealed a group of turbulent bursting sequences associated with sediment resuspension. These observations, in flow conditions where resuspension was not expected to occur based on mean threshold concepts, reveal that intermittent turbulent events control sediment resuspension rather a single time-averaged critical velocity. This highlights the need of considering turbulence as a significant factor in sediment resuspension and should be further investigated for inclusion into future sediment transport modeling.Plain Language Summary In this paper, investigation from deep-water (~375 m) field measurements were carried out, showing that in deep water conditions, fluid turbulent bursting phenomena plays a significant role in resuspending sediment, even for low-flow conditions under which transport equations (based on a time-averaged critical velocity) predict no transport. The finding of this study allows us advance the understanding of the near-bed sediment resuspension process for developing improved sediment transport equations and models in the future.
Abstract. Laboratory experiments were undertaken in a unidirectional current flume in order to examine the role of turbulence on incipient sediment motion. An acoustic Doppler velocimeter was used to measure the instantaneous three-dimensional velocity components and acoustic backscatter (related to suspended sediment concentration). The relationship between wall turbulence (in particular, the "bursting" phenomenon) and resuspension of a non-cohesive sediment bed was examined. The results within a range above and below the measured critical velocity suggested that: 1) the contribution of turbulent bursting events remained identical in both experimental conditions; 2) ejection and sweep events contributed more to the total sediment flux than up-acceleration and down-deceleration events; and 3) wavelet transform revealed a correlation between the momentum and sediment flux in both test conditions. Such similarities in conditions above and below the measured critical velocity highlighted the need to re-evaluate the accuracy of a single time-averaged critical velocity for the initiation of sediment entrainment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.