We construct a p-adic analog to AdS/CFT, where an unramified extension of the p-adic numbers replaces Euclidean space as the boundary and a version of the Bruhat-Tits tree replaces the bulk. Correlation functions are computed in the simple case of a single massive scalar in the bulk, with results that are strikingly similar to ordinary holographic correlation functions when expressed in terms of local zeta functions. We give some brief discussion of the geometry of p-adic chordal distance and of Wilson loops. Our presentation includes an introduction to p-adic numbers.
We present the holographic object which computes the five-point global conformal block in arbitrary dimensions for external and exchanged scalar operators. This object is interpreted as a weighted sum over infinitely many five-point geodesic bulk diagrams. These five-point geodesic bulk diagrams provide a generalization of their previously studied fourpoint counterparts. We prove our claim by showing that the aforementioned sum over geodesic bulk diagrams is the appropriate eigenfunction of the conformal Casimir operator with the right boundary conditions. This result rests on crucial inspiration from a much simpler p-adic version of the problem set up on the Bruhat-Tits tree.
Conformal blocks are the fundamental, theory-independent building blocks in any CFT, so it is important to understand their holographic representation in the context of AdS/CFT. We describe how to systematically extract the holographic objects which compute higherpoint global (scalar) conformal blocks in arbitrary spacetime dimensions, extending the result for the four-point block, known in the literature as a geodesic Witten diagram, to five-and six-point blocks. The main new tools which allow us to obtain such representations are various higher-point propagator identities, which can be interpreted as generalizations of the well-known flat space star-triangle identity, and which compute integrals over products of three bulk-to-bulk and/or bulk-to-boundary propagators in negatively curved spacetime. Using the holographic representation of the higher-point conformal blocks and higher-point propagator identities, we develop geodesic diagram techniques to obtain the explicit directchannel conformal block decomposition of a broad class of higher-point AdS diagrams in a scalar effective bulk theory, with closed-form expressions for the decomposition coefficients. These methods require only certain elementary manipulations and no bulk integration, and furthermore provide quite trivially a simple algebraic origin of the logarithmic singularities of higher-point tree-level AdS diagrams. We also provide a more compact repackaging in terms of the spectral decomposition of the same diagrams, as well as an independent discussion on the closely related but computationally simpler framework over p-adics which admits comparable statements for all previously mentioned results.
We formulate a Euclidean theory of edge length dynamics based on a notion of Ricci curvature on graphs with variable edge lengths. In order to write an explicit form for the discrete analog of the Einstein-Hilbert action, we require that the graph should either be a tree or that all its cycles should be sufficiently long. The infinite regular tree with all edge lengths equal is an example of a graph with constant negative curvature, providing a connection with p-adic AdS/CFT, where such a tree takes the place of anti-de Sitter space. We compute simple correlators of the operator holographically dual to edge length fluctuations. This operator has dimension equal to the dimension of the boundary, and it has some features in common with the stress tensor.
Three related analyses of φ 4 theory with O(N ) symmetry are presented. In the first, we review the O(N ) model over the p-adic numbers and the discrete renormalization group transformations which can be understood as spin blocking in an ultrametric context. We demonstrate the existence of a Wilson-Fisher fixed point using an expansion, and we show how to obtain leading order results for the anomalous dimensions of low dimension operators near the fixed point. Along the way, we note an important aspect of ultrametric field theories, which is a non-renormalization theorem for kinetic terms. In the second analysis, we employ large N methods to establish formulas for anomalous dimensions which are valid equally for field theories over the p-adic numbers and field theories on R n . Results for anomalous dimensions agree between the first and second analyses when they can be meaningfully compared. In the third analysis, we consider higher derivative versions of the O(N ) model on R n , the simplest of which has been studied in connection with spatially modulated phases. Our general formula for anomalous dimensions can still be applied. Analogies with two-derivative theories hint at the existence of some interesting unconventional field theories in four real Euclidean dimensions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.