Whole genome sequencing (WGS) of prospectively collected tissue biopsies of 442 metastatic breast cancer (mBC) patients reveals that, compared to primary BC, tumour mutational burden (TMB) doubled, relative contributions of mutational signatures shifted, and mutation frequency of six known driver genes increased in mBC. Significant associations with pre-treatment were observed as well. The contribution of mutational signature 17 was significantly enriched in patients pre-treated with 5-FU, taxanes, platinum and/or eribulin, whereas the here identified de novo mutational signature I was significantly associated with pre-treatment containing platinum-based chemotherapy. Clinically relevant subgroups of tumours were identified exhibiting either homologous recombination deficiency (13%), high TMB (11%) or specific alterations (24%) linked to sensitivity to FDA-approved drugs. This study provides important novel insight into the biology of mBC and identifies clinically useful genomic features for future improvement of patient management.
BackgroundA substantial number of microRNAs (miRNAs) is subject to epigenetic silencing in cancer. Although epigenetic silencing of tumour suppressor genes is an important feature of cervical cancer, little is known about epigenetic silencing of miRNAs. Since DNA methylation-based silencing of hsa-miR-124 occurs in various human cancers, we studied the frequency and functional effects of hsa-miR-124 methylation in cervical carcinogenesis.ResultsQuantitative MSP analysis of all 3 loci encoding the mature hsa-miR-124 (hsa-miR-124-1/-2/-3) showed methylation in cervical cancer cell lines SiHa, CaSki and HeLa as well as in late passages of human papillomavirus (HPV) type 16 or 18 immortalised keratinocytes. Treatment of SiHa cells with a demethylating agent reduced hsa-miR-124 methylation levels and induced hsa-miR-124 expression. In HPV-immortalised keratinocytes increased methylation levels were related to reduced hsa-miR-124 expression and higher mRNA expression of IGFBP7, a potential hsa-miR-124 target gene. Ectopic hsa-miR-124 expression in SiHa and CaSki cells decreased proliferation rates and migratory capacity. Combined hsa-miR-124-1 and/or hsa-miR-124-2 methylation analysis of 139 cervical tissue specimens showed an increasing methylation frequency from 0% in normal tissues up to 93% in cervical carcinomas. Increased methylation levels of hsa-miR-124-1 and hsa-miR-124-2 were significantly correlated with reduced hsa-miR-124 expression in cervical tissue specimens. Combined hsa-miR-124-1 and/or hsa-miR-124-2 methylation analysis of 43 cervical scrapes of high-risk HPV positive women was predictive of underlying high-grade lesions.ConclusionsDNA methylation-based silencing of hsa-miR-124 is functionally involved in cervical carcinogenesis and may provide a valuable marker for improved detection of cervical cancer and its high-grade precursor lesions.
Little is known about the alterations in microRNA (miRNA) expression patterns during the consecutive stages of cervical cancer development and their association with chromosomal instability. In this study, miRNA expression in normal cervical squamous epithelium, high-grade precancerous lesions (cervical intraepithelial neoplasia (CIN2-3)), squamous cell carcinomas (SCCs) and adenocarcinomas (AdCAs) was integrated with previously generated chromosomal profiles of the same samples. Significantly differential expression during the consecutive stages of cervical SCC development was observed for 106 miRNAs. Of these differentially expressed miRNAs, 27 showed early transiently altered expression in CIN2-3 lesions only, 46 miRNAs showed late altered expression in SCCs only and 33 showed continuously altered expression in both CIN2-3 and SCCs. Altered expression of five significantly differentially expressed miRNAs, hsa-miR-9 (1q23.2), hsa-miR-15b (3q25.32), hsa-miR-28-5p (3q27.3), hsa-miR-100 and hsa-miR-125b (both 11q24.1), was directly linked to frequent chromosomal alterations. Functional analyses were performed for hsa-miR-9, representing a potential oncogene with increased expression linked to a chromosomal gain of 1q. Hsa-miR-9 overexpression was found to increase cell viability, anchorage-independent growth and migration in vitro. Upon organic raft culturing, hsa-miR-9 hampered differentiation and induced proliferation in all strata of the epithelial layer. These findings support a potential oncogenic function of hsa-miR-9 in cervical cancer. In summary, differential expression of 106 miRNAs, partly associated with chromosomal alterations, was observed during cervical SCC development. Altered expression of hsa-miR-9 associated with a chromosomal gain of chromosome 1q was shown to be functionally relevant, underlining the importance of deregulated miRNA expression in cervical carcinogenesis.
The cyclin-dependent kinase (CDK) 4/6 inhibitors belong to a new class of drugs that interrupt proliferation of malignant cells by inhibiting progression through the cell cycle. Three such inhibitors, palbociclib, ribociclib, and abemaciclib were recently approved for breast cancer treatment in various settings and combination regimens. On the basis of their impressive efficacy, all three CDK4/6 inhibitors now play an important role in the treatment of patients with HR+, HER2− breast cancer; however, their optimal use still needs to be established. The three drugs have many similarities in both pharmacokinetics and pharmacodynamics. However, there are some differences on the basis of which the choice for a particular CDK4/6 inhibitor for an individual patient can be important. In this article, the clinical pharmacokinetic and pharmacodynamic profiles of the three CDK4/6 inhibitors are reviewed and important future directions of the clinical applicability of CDK4/6 inhibitors will be discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.