The use of Mg-based compounds in solid-state hydrogen energy storage has a very high prospect due to its high potential, low-cost, and ease of availability. Today, solid-state hydrogen storage science is concerned with understanding the material behavior of different compositions and structure when interacting with hydrogen. Finding a suitable material has remained an elusive idea, and therefore, this review summarizes works by various groups, the milestones they have achieved, and the roadmap to be taken on the study of hydrogen storage using low-cost magnesium composites. Mg-based compounds are further examined from the perspective of artificial intelligence studies, which helps to improve prediction of their properties and hydrogen storage performance. There exist several techniques to improve the performance of Mg-based compounds: microstructure modification, use of catalytic additives, and composition regulation. Microstructure modification is usually achieved by employing different synthetic techniques like severe plastic deformation, high energy ball milling, and cold rolling, among others. These synthetic approaches are discussed herein. In this review, a discussion of key parameters and operating conditions are highlighted in a view to finding high storage capacity and faster kinetics. Furthermore, recent approaches like machine learning have found application in guiding the experimental design. Hence, this review paper also explores how machine learning techniques have been utilized to fasten the materials research. It is however noted that this study is not exhaustive in itself.
Phase change materials (PCMs) serve as an advantage in thermal energy storage systems utilizing the available sensible and latent heat. The PCMs absorb the thermal energy during the charging process and release it into the environment during the discharging process. Steatite is low cost and eco-friendly, with a thermal stability up to 1000 °C, and it is abundantly available in nature. This study investigates the steatite–paraffin wax-based PCM and the effect on the cyclic loads using a horizontal triplex-tube latent heat energy storage system. The thermal conductivity value of the milled steatite-based PCM composite was 7.7% higher than pure PCM. The PCM with the ball-milled steatite-fabricated composite exhibited better discharging characteristics, increasing the discharge time by 50% more than that of the pure paraffin wax. Moreover, the milled steatite-based PCM outperformed that incorporated with non-milled steatite with paraffin.
The automobile industry uses magnesium for load-bearing components due to its low density, durability, and ductility. This study investigated a nanocomposite containing Nb2O5 (3 and 6 wt%) nanoparticles as reinforcement with AZ31 magnesium alloy made by stir casting. A severe plastic deformation was conducted on the cast samples via equal-channel angular pressing (ECAP) after homogenization at 410 °C for 24 h and aging at 200 °C for 10 h. The microstructural distributions and mechanical properties of the magnesium metal matrix composites (MMCs) reinforced with Nb2O5 nanoparticles were investigated via ECAP. With the increase in the number of ECAP passes, the grain sizes became uniform, and the size of secondary phases reduced in the pure Nb2O5/AZ31 MMC. The grain size decreased remarkably after the ECAP process from 31.95 µm to 18.41µm due to the dynamic recrystallization during plastic deformation. The mechanical properties of hardness, ultimate tensile strength, and elongation effectively improved after each ECAP pass. The maximum values achieved for the Nb2O5/AZ31 composite subjected to ECAP were 64.12 ± 12 HV, 151.2 MPa, and 52.71%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.