The field of host-guest complexation is intensely attractive from diverse perspectives, including materials science, chemistry and biology. The uptake and encapsulation of guest species by host frameworks are being investigated for a wide variety of purposes, including separation and storage using zeolites, and recognition and sensing by enzymes in solution. Here we focus on the concept of the cooperative integration of 'softness' and 'regularity'. Recent developments on porous coordination polymers (or metal-organic frameworks) have provided the inherent properties that combine these features. Such soft porous crystals exhibit dynamic frameworks that are able to respond to external stimuli such as light, electric fields or the presence of particular species, but they are also crystalline and can change their channels reversibly while retaining high regularity. We discuss the relationship between the structures and properties of these materials in view of their practical applications.
Chemosensors detect a single target molecule from among several molecules, but cannot differentiate targets from one another. In this study, we report a molecular decoding strategy in which a single host domain accommodates a class of molecules and distinguishes between them with a corresponding readout. We synthesized the decoding host by embedding naphthalenediimide into the scaffold of an entangled porous framework that exhibited structural dynamics due to the dislocation of two chemically non-interconnected frameworks. An intense turn-on emission was observed on incorporation of a class of aromatic compounds, and the resulting luminescent colour was dependent on the chemical substituent of the aromatic guest. This unprecedented chemoresponsive, multicolour luminescence originates from an enhanced naphthalenediimide–aromatic guest interaction because of the induced-fit structural transformation of the entangled framework. We demonstrate that the cooperative structural transition in mesoscopic crystal domains results in a nonlinear sensor response to the guest concentration.
MOF on MOF: Core-shell porous coordination polymer (PCP) crystals are fabricated at the single-crystal level by epitaxial growth in solution. Synchrotron X-ray diffraction measurements unveiled the structural relationship between the shell crystal and the core crystal, where in-plane rotational epitaxial growth compensates the difference in lattice constant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.