Resveratrol is a plant polyphenolic compound. Evidence indicates that resveratrol has beneficial effects against aging and neurodegenerative diseases. The goal of our study was in vivo examination of the effects of resveratrol on the abundance of mRNA encoding Brain Derived Neurotrophic Factor (BDNF) in the hippocampus of rat brain. Rats were administrated orally by different doses (2.5-20 mg/kg bwt) of resveratrol for 3, 10 and 30 days. Saline was used as control and 10% ethanol in saline was used as vehicle for resveratrol. Measurement of BDNF mRNA by Real-time RT-PCR showed that levels of the mRNA for BDNF were significantly and dose dependently elevated in the hippocampal tissues of rats. The findings suggest that the neuroprotective effects of resveratrol may be at least partly due to its inducing effects on the expression levels of the BDNF mRNA.
Gamma-irradiation (Gamma-IR) resistance is a character of many malignant cells that decreases the efficacy of radiotherapy. Although ionizing radiation activates multiple cellular factors that vary depending on dose and tissue specificity, the activation of nuclear factor-kappa B appears to be a well-conserved response in tumor cells exposed to Gamma-IR which can lead to the inhibition of radiation-induced apoptosis. Thus, inhibition of NF-kappaB activation is an important strategy to abolish radioresistance. Recently, we have demonstrated that docosahexaenoic acid (DHA; 22:6 n-3 polyunsaturated fatty acids)-induced apoptosis may occur via ligand-dependent transcription factor, peroxisome proliferator-activated receptors-gamma. Moreover, many reports described that activation of PPAR-gamma can lead to the induction of apoptosis through NF-kappaB inhibition. Therefore, we addressed the mechanism that NF-kappaB is a downstream target of DHA and may be involved in the process of radiosensitization. Ramos cells are a highly radiation-resistant and p53-deficient Burkitt's lymphoma cell line. The results of present study showed that cotreatment of Ramos cells with low doses of DHA and Gamma-IR leads to marked phosphorylation of IkappaB and translocation of p65/NF-kappaB to nucleus in parallel with increase in apoptosis. Preincubation of the cells with GW9662, a selective antagonist for PPAR-gamma, significantly prevented NF-kappaB activation profile. Taken together, these results suggest that low concentration of DHA inhibited Gamma-IR-induced activation of NF-kappaB and sensitized Ramos cells to IR-induced cytotoxicity. Pretreatment of Ramos cells with GW9662 abrogated the ability of DHA to inhibit Gamma-IR-induced activation of NF-kappaB and diminished the DHA radiosensitizing effect indicating that PPAR-gamma may act as a mediator of DHA in inhibition of NF-kappaB. Taken together, these results suggest that low concentration of DHA inhibited Gamma-IR-induced activation of NF-kappaB and sensitized Ramos cells to IR-induced cytotoxicity. Pretreatment of Ramos cells with GW9662 abrogated the ability of DHA to inhibit Gamma-IR-induced activation of NF-kappaB and diminished the DHA radiosensitizing effect indicating that PPAR-gamma may act as a mediator of DHA in inhibition of NF-kappaB.
These results suggest that CAD is associated with Glu298Asp polymorphism of the NOS3 gene in our population and that this polymorphism is an independent risk factor for CAD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.