Cyclooxygenases metabolize arachidonate to five primary prostanoids: PGE(2), PGF(2 alpha), PGI(2), TxA(2), and PGD(2). These autacrine lipid mediators interact with specific members of a family of distinct G-protein-coupled prostanoid receptors, designated EP, FP, IP, TP, and DP, respectively. Each of these receptors has been cloned, expressed, and characterized. This family of eight prostanoid receptor complementary DNAs encodes seven transmembrane proteins which are typical of G-protein-coupled receptors and these receptors are distinguished by their ligand-binding profiles and the signal transduction pathways activated on ligand binding. Ligand-binding selectivity of these receptors is determined by both the transmembrane sequences and amino acid residues in the putative extracellular-loop regions. The selectivity of interaction between the receptors and G proteins appears to be mediated at least in part by the C-terminal tail region. Each of the EP(1), EP(3), FP, and TP receptors has alternative splice variants described that alter the coding sequence in the C-terminal intracellular tail region. The C-terminal variants modulate signal transduction, phosphorylation, and desensitization of these receptors, as well as altering agonist-independent constitutive activity.
SUMMARY A patient with a 20-year history of recurrent respiratory papillomatosis had progressive, bilateral tumor invasion of the lung parenchyma. We used conditional reprogramming to generate cell cultures from the patient’s normal and tumorous lung tissue. Analysis revealed that the laryngeal tumor cells contained a wild-type 7.9-kb human papillomavirus virus type 11 (HPV-11) genome, whereas the pulmonary tumor cells contained a 10.4-kb genome. The increased size of the latter viral genome was due to duplication of the promoter and oncogene regions. Chemosensitivity testing identified vorinostat as a potential therapeutic agent. At 3 months after treatment initiation, tumor sizes had stabilized, with durable effects at 15 months.
The actin cytoskeleton controls the overall structure of cells and is highly polarized in chemotaxing cells, with F-actin assembled predominantly in the anterior leading edge and to a lesser degree in the cell's posterior. Wiskott-Aldrich syndrome protein (WASP) has emerged as a central player in controlling actin polymerization. We have investigated WASP function and its regulation in chemotaxing Dictyostelium cells and demonstrated the specific and essential role of WASP in organizing polarized F-actin assembly in chemotaxing cells. Cells expressing very low levels of WASP show reduced F-actin levels and significant defects in polarized F-actin assembly, resulting in an inability to establish axial polarity during chemotaxis. GFP-WASP preferentially localizes at the leading edge and uropod of chemotaxing cells and the B domain of WASP is required for the localization of WASP. We demonstrated that the B domain binds to PI(4,5)P 2 and PI(3,4,5)P 3 with similar affinities. The interaction between the B domain and PI(3,4,5)P 3 plays an important role for the localization of WASP to the leading edge in chemotaxing cells. Our results suggest that the spatial and temporal control of WASP localization and activation is essential for the regulation of directional motility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.