Ultrasonic surface rolling process (USRP) is a novel surface severe plastic deformation (SPD) method that integrates ultrasonic impact peening (UIP) and deep rolling (DR) to enhance the surface integrity and surface mechanical properties of engineering materials. USRP can induce gradient nanostructured surface (GNS) layers on the substrate, providing superior mechanical properties, thus preventing premature material failure. Herein, a comprehensive overview of current-state-of-the art USRP is provided. More specifically, the effect of the USRP on a broad range of materials exclusively used for aerospace, automotive, nuclear, and chemical industries is explained. Furthermore, the effect of USRP on different mechanical properties, such as hardness, tensile, fatigue, wear resistance, residual stress, corrosion resistance, and surface roughness are summarized. In addition, the effect of USRP on grain refinement and the formation of gradient microstructure is discussed. Finally, this study elucidates the application and recent advances of the USRP process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.