This paper presents an inter-query semantic learning approach for image retrieval with relevance feedback. The proposed system combines the kernel biased discriminant analysis (KBDA) based low-level learning and semantic log file (SLF) based high-level learning to achieve high retrieval accuracy after the first iteration. User's relevance feedback is utilized for updating both low-level and highlevel features of the query image. Extensive experiments demonstrate our system outperforms three peer systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.