Anticoagulant rodenticide (AR) poisoning has emerged as a significant concern for conservation and management of non-target wildlife. The purpose for these toxicants is to suppress pest populations in agricultural or urban settings. The potential of direct and indirect exposures and illicit use of ARs on public and community forest lands have recently raised concern for fishers (Martes pennanti), a candidate for listing under the federal Endangered Species Act in the Pacific states. In an investigation of threats to fisher population persistence in the two isolated California populations, we investigate the magnitude of this previously undocumented threat to fishers, we tested 58 carcasses for the presence and quantification of ARs, conducted spatial analysis of exposed fishers in an effort to identify potential point sources of AR, and identified fishers that died directly due to AR poisoning. We found 46 of 58 (79%) fishers exposed to an AR with 96% of those individuals having been exposed to one or more second-generation AR compounds. No spatial clustering of AR exposure was detected and the spatial distribution of exposure suggests that AR contamination is widespread within the fisher’s range in California, which encompasses mostly public forest and park lands Additionally, we diagnosed four fisher deaths, including a lactating female, that were directly attributed to AR toxicosis and documented the first neonatal or milk transfer of an AR to an altricial fisher kit. These ARs, which some are acutely toxic, pose both a direct mortality or fitness risk to fishers, and a significant indirect risk to these isolated populations. Future research should be directed towards investigating risks to prey populations fishers are dependent on, exposure in other rare forest carnivores, and potential AR point sources such as illegal marijuana cultivation in the range of fishers on California public lands.
Wildlife populations of conservation concern are limited in distribution, population size and persistence by various factors, including mortality. The fisher (Pekania pennanti), a North American mid-sized carnivore whose range in the western Pacific United States has retracted considerably in the past century, was proposed for threatened status protection in late 2014 under the United States Endangered Species Act by the United States Fish and Wildlife Service in its West Coast Distinct Population Segment. We investigated mortality in 167 fishers from two genetically and geographically distinct sub-populations in California within this West Coast Distinct Population Segment using a combination of gross necropsy, histology, toxicology and molecular methods. Overall, predation (70%), natural disease (16%), toxicant poisoning (10%) and, less commonly, vehicular strike (2%) and other anthropogenic causes (2%) were causes of mortality observed. We documented both an increase in mortality to (57% increase) and exposure (6%) from pesticides in fishers in just the past three years, highlighting further that toxicants from marijuana cultivation still pose a threat. Additionally, exposure to multiple rodenticides significantly increased the likelihood of mortality from rodenticide poisoning. Poisoning was significantly more common in male than female fishers and was 7 times more likely than disease to kill males. Based on necropsy findings, suspected causes of mortality based on field evidence alone tended to underestimate the frequency of disease-related mortalities. This study is the first comprehensive investigation of mortality causes of fishers and provides essential information to assist in the conservation of this species.
Interspecific killing is common among carnivores and can have population-level effects on imperiled species. The fisher (Pekania [Martes] pennanti) is a rare forest carnivore in western North America and a candidate for listing under the United States Endangered Species Act. Interspecific killing and intraguild predation are poorly understood in fishers and potential threats to existing western populations. We studied the prevalence and patterns of interspecific killing of fishers in the southern Sierra Nevada and Coastal Range of California. We collected forensic evidence and samples from the carcasses and predation sites, conducted full necropsies when possible, and used molecular methods to determine species of predators responsible for killing fishers. We recovered 101 (59 female, 42 male) fisher carcasses; for 62 (61%) carcasses, we attributed cause of death to interspecific killing. We found that bobcats (Lynx rufus, n ¼ 25 fisher mortalities), mountain lions (Puma concolor, n ¼ 20), and coyotes (Canis latrans, n ¼ 4) were predators of fishers in our study areas. Bobcats killed only female fishers, whereas mountain lions more frequently killed male than female fishers, confirming our hypothesis that female fishers would suffer lethal attacks by smaller predators than would male fishers. Coyotes rarely killed fishers. We found differences in pathologic characteristics of the predation events among the 3 predator species, which may be helpful in identifying predator species. Ó
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.